無(wú)論是身處學(xué)校還是步入社會(huì),大家都嘗試過(guò)寫作吧,借助寫作也可以提高我們的語(yǔ)言組織能力。相信許多人會(huì)覺(jué)得范文很難寫?接下來(lái)小編就給大家介紹一下優(yōu)秀的范文該怎么寫,我們一起來(lái)看一看吧。
九年級(jí)初中數(shù)學(xué)教學(xué)案例篇一
1.本單元教學(xué)的主要內(nèi)容:
二次根式的概念;二次根式的加減;二次根式的乘除;最簡(jiǎn)二次根式.
2.本單元在教材中的地位和作用:
二次根式是在學(xué)完了八年級(jí)下冊(cè)第十七章《反比例正函數(shù)》、第十八章《勾股定理及其應(yīng)用》等內(nèi)容的基礎(chǔ)之上繼續(xù)學(xué)習(xí)的,它也是今后學(xué)習(xí)其他數(shù)學(xué)知識(shí)的基礎(chǔ).
教學(xué)目標(biāo)
1.知識(shí)與技能
(1)理解二次根式的概念.
(2)理解 (a≥0)是一個(gè)非負(fù)數(shù),( )2=a(a≥0), =a(a≥0).
(3)掌握 ? = (a≥0,b≥0), = ? ;
= (a≥0,b>0), = (a≥0,b>0).
(4)了解最簡(jiǎn)二次根式的概念并靈活運(yùn)用它們對(duì)二次根式進(jìn)行加減.
2.過(guò)程與方法
(1)先提出問(wèn)題,讓學(xué)生探討、分析問(wèn)題,師生共同歸納,得出概念.再對(duì)概念的內(nèi)涵進(jìn)行分析,得出幾個(gè)重要結(jié)論,并運(yùn)用這些重要結(jié)論進(jìn)行二次根式的計(jì)算和化簡(jiǎn).
(2)用具體數(shù)據(jù)探究規(guī)律,用不完全歸納法得出二次根式的乘(除)法規(guī)定,并運(yùn)用規(guī)定進(jìn)行計(jì)算.
(3)利用逆向思維,得出二次根式的乘(除)法規(guī)定的逆向等式并運(yùn)用它進(jìn)行化簡(jiǎn).
(4)通過(guò)分析前面的計(jì)算和化簡(jiǎn)結(jié)果,抓住它們的共同特點(diǎn),給出最簡(jiǎn)二次根式的概念.利用最簡(jiǎn)二次根式的概念,來(lái)對(duì)相同的二次根式進(jìn)行合并,達(dá)到對(duì)二次根式進(jìn)行計(jì)算和化簡(jiǎn)的目的.
3.情感、態(tài)度與價(jià)值觀
通過(guò)本單元的學(xué)習(xí)培養(yǎng)學(xué)生:利用規(guī)定準(zhǔn)確計(jì)算和化簡(jiǎn)的嚴(yán)謹(jǐn)?shù)目茖W(xué)精神,經(jīng)過(guò)探索二次根式的重要結(jié)論,二次根式的乘除規(guī)定,發(fā)展學(xué)生觀察、分析、發(fā)現(xiàn)問(wèn)題的能力.
教學(xué)重點(diǎn)
1.二次根式 (a≥0)的內(nèi)涵. (a≥0)是一個(gè)非負(fù)數(shù);( )2=a(a≥0); =a(a≥0)及其運(yùn)用.
2.二次根式乘除法的規(guī)定及其運(yùn)用.
3.最簡(jiǎn)二次根式的概念.
4.二次根式的加減運(yùn)算.
教學(xué)難點(diǎn)
1.對(duì) (a≥0)是一個(gè)非負(fù)數(shù)的理解;對(duì)等式( )2=a(a≥0)及 =a(a≥0)的理解及應(yīng)用.
2.二次根式的乘法、除法的條件限制.
3.利用最簡(jiǎn)二次根式的概念把一個(gè)二次根式化成最簡(jiǎn)二次根式.
教學(xué)關(guān)鍵
1.潛移默化地培養(yǎng)學(xué)生從具體到一般的推理能力,突出重點(diǎn),突破難點(diǎn).
2.培養(yǎng)學(xué)生利用二次根式的規(guī)定和重要結(jié)論進(jìn)行準(zhǔn)確計(jì)算的能力,培養(yǎng)學(xué)生一絲不茍的科學(xué)精神.
單元課時(shí)劃分
本單元教學(xué)時(shí)間約需11課時(shí),具體分配如下:
21.1 二次根式 3課時(shí)
21.2 二次根式的乘法 3課時(shí)
21.3 二次根式的加減 3課時(shí)
教學(xué)活動(dòng)、習(xí)題課、小結(jié) 2課時(shí)
21.1 二次根式
第一課時(shí)
教學(xué)內(nèi)容
二次根式的概念及其運(yùn)用
教學(xué)目標(biāo)
理解二次根式的概念,并利用 (a≥0)的意義解答具體題目.
提出問(wèn)題,根據(jù)問(wèn)題給出概念,應(yīng)用概念解決實(shí)際問(wèn)題.
教學(xué)重難點(diǎn)關(guān)鍵
1.重點(diǎn):形如 (a≥0)的式子叫做二次根式的概念;
2.難點(diǎn)與關(guān)鍵:利用“ (a≥0)”解決具體問(wèn)題.
教學(xué)過(guò)程
一、復(fù)習(xí)引入
(學(xué)生活動(dòng))請(qǐng)同學(xué)們獨(dú)立完成下列三個(gè)問(wèn)題:
問(wèn)題1:已知反比例函數(shù)y= ,那么它的圖象在第一象限橫、縱坐標(biāo)相等的點(diǎn)的坐標(biāo)是___________.
問(wèn)題2:如圖,在直角三角形abc中,ac=3,bc=1,∠c=90°,那么ab邊的長(zhǎng)是__________.
問(wèn)題3:甲射擊6次,各次擊中的環(huán)數(shù)如下:8、7、9、9、7、8,那么甲這次射擊的方差是s2,那么s=_________.
老師點(diǎn)評(píng):
問(wèn)題1:橫、縱坐標(biāo)相等,即x=y,所以x2=3.因?yàn)辄c(diǎn)在第一象限,所以x= ,所以所求點(diǎn)的坐標(biāo)( , ).
問(wèn)題2:由勾股定理得ab=
問(wèn)題3:由方差的概念得s= .
二、探索新知
很明顯 、 、 ,都是一些正數(shù)的算術(shù)平方根.像這樣一些正數(shù)的算術(shù)平方根的式子,我們就把它稱二次根式.因此,一般地,我們把形如 (a≥0)的式子叫做二次根式,“ ”稱為二次根號(hào).
(學(xué)生活動(dòng))議一議:
1.-1有算術(shù)平方根嗎?
2.0的算術(shù)平方根是多少?
3.當(dāng)a<0, 有意義嗎?
老師點(diǎn)評(píng):(略)
例1.下列式子,哪些是二次根式,哪些不是二次根式: 、 、 、 (x>0)、 、 、- 、 、 (x≥0,y≥0).
分析:二次根式應(yīng)滿足兩個(gè)條件:第一,有二次根號(hào)“ ”;第二,被開(kāi)方數(shù)是正數(shù)或0.
解:二次根式有: 、 (x>0)、 、- 、 (x≥0,y≥0);不是二次根式的有: 、 、 、 .
例2.當(dāng)x是多少時(shí), 在實(shí)數(shù)范圍內(nèi)有意義?
分析:由二次根式的定義可知,被開(kāi)方數(shù)一定要大于或等于0,所以3x-1≥0, 才能有意義.
解:由3x-1≥0,得:x≥
當(dāng)x≥ 時(shí), 在實(shí)數(shù)范圍內(nèi)有意義.
三、鞏固練習(xí)
教材p練習(xí)1、2、3.
四、應(yīng)用拓展
例3.當(dāng)x是多少時(shí), + 在實(shí)數(shù)范圍內(nèi)有意義?
分析:要使 + 在實(shí)數(shù)范圍內(nèi)有意義,必須同時(shí)滿足 中的≥0和 中的x+1≠0.
解:依題意,得
由①得:x≥-
由②得:x≠-1
當(dāng)x≥- 且x≠-1時(shí), + 在實(shí)數(shù)范圍內(nèi)有意義.
例4(1)已知y= + +5,求 的值.(答案:2)
(2)若 + =0,求a2004+b2004的值.(答案: )
五、歸納小結(jié)(學(xué)生活動(dòng),老師點(diǎn)評(píng))
本節(jié)課要掌握:
1.形如 (a≥0)的式子叫做二次根式,“ ”稱為二次根號(hào).
2.要使二次根式在實(shí)數(shù)范圍內(nèi)有意義,必須滿足被開(kāi)方數(shù)是非負(fù)數(shù).
六、布置作業(yè)
1.教材p8復(fù)習(xí)鞏固1、綜合應(yīng)用5.
2.選用課時(shí)作業(yè)設(shè)計(jì).
3.課后作業(yè):《同步訓(xùn)練》
第一課時(shí)作業(yè)設(shè)計(jì)
一、選擇題 1.下列式子中,是二次根式的是( )
a.- b. c. d.x
2.下列式子中,不是二次根式的是( )
a. b. c. d.
3.已知一個(gè)正方形的面積是5,那么它的邊長(zhǎng)是( )
a.5 b. c. d.以上皆不對(duì)
二、填空題
1.形如________的式子叫做二次根式.
2.面積為a的正方形的邊長(zhǎng)為_(kāi)_______.
3.負(fù)數(shù)________平方根.
三、綜合提高題
1.某工廠要制作一批體積為1m3的產(chǎn)品包裝盒,其高為0.2m,按設(shè)計(jì)需要,底面應(yīng)做成正方形,試問(wèn)底面邊長(zhǎng)應(yīng)是多少?
2.當(dāng)x是多少時(shí), +x2在實(shí)數(shù)范圍內(nèi)有意義?
3.若 + 有意義,則 =_______.
4.使式子 有意義的未知數(shù)x有( )個(gè).
a.0 b.1 c.2 d.無(wú)數(shù)
5.已知a、b為實(shí)數(shù),且 +2 =b+4,求a、b的值.
第一課時(shí)作業(yè)設(shè)計(jì)答案:
一、1.a 2.d 3.b
二、1. (a≥0) 2. 3.沒(méi)有
三、1.設(shè)底面邊長(zhǎng)為x,則0.2x2=1,解答:x= .
2.依題意得: ,
∴當(dāng)x>- 且x≠0時(shí), +x2在實(shí)數(shù)范圍內(nèi)沒(méi)有意義.
3.
4.b
5.a=5,b=-4
九年級(jí)初中數(shù)學(xué)教學(xué)案例篇二
理解一元二次方程“降次”——轉(zhuǎn)化的數(shù)學(xué)思想,并能應(yīng)用它解決一些具體問(wèn)題.
提出問(wèn)題,列出缺一次項(xiàng)的一元二次方程ax2+c=0,根據(jù)平方根的意義解出這個(gè)方程,然后知識(shí)遷移到解a(ex+f)2+c=0型的一元二次方程.
重點(diǎn)
運(yùn)用開(kāi)平方法解形如(x+m)2=n(n≥0)的方程,領(lǐng)會(huì)降次——轉(zhuǎn)化的數(shù)學(xué)思想.
難點(diǎn)
通過(guò)根據(jù)平方根的意義解形如x2=n的方程,將知識(shí)遷移到根據(jù)平方根的意義解形如(x+m)2=n(n≥0)的方程.
一、復(fù)習(xí)引入
學(xué)生活動(dòng):請(qǐng)同學(xué)們完成下列各題.
問(wèn)題1:填空
(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.
解:根據(jù)完全平方公式可得:(1)164;(2)42;(3)(p2)2p2.
問(wèn)題2:目前我們都學(xué)過(guò)哪些方程?二元怎樣轉(zhuǎn)化成一元?一元二次方程與一元一次方程有什么不同?二次如何轉(zhuǎn)化成一次?怎樣降次?以前學(xué)過(guò)哪些降次的方法?
二、探索新知
上面我們已經(jīng)講了x2=9,根據(jù)平方根的意義,直接開(kāi)平方得x=±3,如果x換元為2t+1,即(2t+1)2=9,能否也用直接開(kāi)平方的方法求解呢?
(學(xué)生分組討論)
老師點(diǎn)評(píng):回答是肯定的,把2t+1變?yōu)樯厦娴膞,那么2t+1=±3
即2t+1=3,2t+1=-3
方程的兩根為t1=1,t2=-2
例1解方程:(1)x2+4x+4=1(2)x2+6x+9=2
分析:(1)x2+4x+4是一個(gè)完全平方公式,那么原方程就轉(zhuǎn)化為(x+2)2=1.
(2)由已知,得:(x+3)2=2
直接開(kāi)平方,得:x+3=±2
即x+3=2,x+3=-2
所以,方程的兩根x1=-3+2,x2=-3-2
解:略.
例2市政府計(jì)劃2年內(nèi)將人均住房面積由現(xiàn)在的10 m2提高到14.4 m2,求每年人均住房面積增長(zhǎng)率.
分析:設(shè)每年人均住房面積增長(zhǎng)率為x,一年后人均住房面積就應(yīng)該是10+10x=10(1+x);二年后人均住房面積就應(yīng)該是10(1+x)+10(1+x)x=10(1+x)2
解:設(shè)每年人均住房面積增長(zhǎng)率為x,
則:10(1+x)2=14.4
(1+x)2=1.44
直接開(kāi)平方,得1+x=±1.2
即1+x=1.2,1+x=-1.2
所以,方程的兩根是x1=0.2=20%,x2=-2.2
因?yàn)槊磕耆司》棵娣e的增長(zhǎng)率應(yīng)為正的,因此,x2=-2.2應(yīng)舍去.
所以,每年人均住房面積增長(zhǎng)率應(yīng)為20%.
(學(xué)生小結(jié))老師引導(dǎo)提問(wèn):解一元二次方程,它們的共同特點(diǎn)是什么?
共同特點(diǎn):把一個(gè)一元二次方程“降次”,轉(zhuǎn)化為兩個(gè)一元一次方程.我們把這種思想稱為“降次轉(zhuǎn)化思想”.
三、鞏固練習(xí)
教材第6頁(yè)練習(xí).
四、課堂小結(jié)
本節(jié)課應(yīng)掌握:由應(yīng)用直接開(kāi)平方法解形如x2=p(p≥0)的方程,那么x=±p轉(zhuǎn)化為應(yīng)用直接開(kāi)平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,達(dá)到降次轉(zhuǎn)化之目的.若p<0則方程無(wú)解.
五、作業(yè)布置
九年級(jí)初中數(shù)學(xué)教學(xué)案例篇三
理解間接即通過(guò)變形運(yùn)用開(kāi)平方法降次解方程,并能熟練應(yīng)用它解決一些具體問(wèn)題.
通過(guò)復(fù)習(xí)可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面兩種形式的一元二次方程的解題步驟.
重點(diǎn)
講清直接降次有困難,如x2+6x-16=0的一元二次方程的解題步驟.
難點(diǎn)
將不可直接降次解方程化為可直接降次解方程的“化為”的轉(zhuǎn)化方法與技巧.
一、復(fù)習(xí)引入
(學(xué)生活動(dòng))請(qǐng)同學(xué)們解下列方程:
(1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9(4)4x2+16x=-7
老師點(diǎn)評(píng):上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得
x=±p或mx+n=±p(p≥0).
如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9嗎?
二、探索新知
列出下面問(wèn)題的方程并回答:
(1)列出的經(jīng)化簡(jiǎn)為一般形式的方程與剛才解題的方程有什么不同呢?
(2)能否直接用上面前三個(gè)方程的解法呢?
問(wèn)題:要使一塊矩形場(chǎng)地的長(zhǎng)比寬多6 m,并且面積為16 m2,求場(chǎng)地的長(zhǎng)和寬各是多少?
(1)列出的經(jīng)化簡(jiǎn)為一般形式的方程與前面講的三道題不同之處是:前三個(gè)左邊是含有x的完全平方式而后二個(gè)不具有此特征.
(2)不能.
既然不能直接降次解方程,那么,我們就應(yīng)該設(shè)法把它轉(zhuǎn)化為可直接降次解方程的方程,下面,我們就來(lái)講如何轉(zhuǎn)化:
x2+6x-16=0移項(xiàng)→x2+6x=16
兩邊加(6/2)2使左邊配成x2+2bx+b2的形式→x2+6x+32=16+9
左邊寫成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5
解一次方程→x1=2,x2=-8
可以驗(yàn)證:x1=2,x2=-8都是方程的根,但場(chǎng)地的寬不能是負(fù)值,所以場(chǎng)地的寬為2 m,長(zhǎng)為8 m.
像上面的解題方法,通過(guò)配成完全平方形式來(lái)解一元二次方程的方法,叫配方法.
可以看出,配方法是為了降次,把一個(gè)一元二次方程轉(zhuǎn)化為兩個(gè)一元一次方程來(lái)解.
例1用配方法解下列關(guān)于x的方程:
(1)x2-8x+1=0(2)x2-2x-12=0
分析:(1)顯然方程的左邊不是一個(gè)完全平方式,因此,要按前面的方法化為完全平方式;(2)同上.
解:略.
三、鞏固練習(xí)
教材第9頁(yè)練習(xí)1,2.(1)(2).
四、課堂小結(jié)
本節(jié)課應(yīng)掌握:
左邊不含有x的完全平方形式的一元二次方程化為左邊是含有x的完全平方形式,右邊是非負(fù)數(shù),可以直接降次解方程的方程.
五、作業(yè)布置
九年級(jí)初中數(shù)學(xué)教學(xué)案例篇四
教學(xué)內(nèi)容
1. (a≥0)是一個(gè)非負(fù)數(shù);
2.( )2=a(a≥0).
教學(xué)目標(biāo)
理解 (a≥0)是一個(gè)非負(fù)數(shù)和( )2=a(a≥0),并利用它們進(jìn)行計(jì)算和化簡(jiǎn).
通過(guò)復(fù)習(xí)二次根式的概念,用邏輯推理的方法推出 (a≥0)是一個(gè)非負(fù)數(shù),用具體數(shù)據(jù)結(jié)合算術(shù)平方根的意義導(dǎo)出( )2=a(a≥0);最后運(yùn)用結(jié)論嚴(yán)謹(jǐn)解題.
教學(xué)重難點(diǎn)關(guān)鍵
1.重點(diǎn): (a≥0)是一個(gè)非負(fù)數(shù);( )2=a(a≥0)及其運(yùn)用.
2.難點(diǎn)、關(guān)鍵:用分類思想的方法導(dǎo)出 (a≥0)是一個(gè)非負(fù)數(shù);用探究的方法導(dǎo)出( )2=a(a≥0).
教學(xué)過(guò)程
一、復(fù)習(xí)引入
(學(xué)生活動(dòng))口答
1.什么叫二次根式?
2.當(dāng)a≥0時(shí), 叫什么?當(dāng)a<0時(shí), 有意義嗎?
老師點(diǎn)評(píng)(略).
二、探究新知
議一議:(學(xué)生分組討論,提問(wèn)解答)
(a≥0)是一個(gè)什么數(shù)呢?
老師點(diǎn)評(píng):根據(jù)學(xué)生討論和上面的練習(xí),我們可以得出
(a≥0)是一個(gè)非負(fù)數(shù).
做一做:根據(jù)算術(shù)平方根的意義填空:
( )2=_______;( )2=_______;( )2=______;( )2=_______;
( )2=______;( )2=_______;( )2=_______.
老師點(diǎn)評(píng): 是4的算術(shù)平方根,根據(jù)算術(shù)平方根的意義, 是一個(gè)平方等于4的非負(fù)數(shù),因此有( )2=4.
同理可得:( )2=2,( )2=9,( )2=3,( )2= ,( )2= ,( )2=0,所以
( )2=a(a≥0)
例1 計(jì)算
1.( )2 2.(3 )2 3.( )2 4.( )2
分析:我們可以直接利用( )2=a(a≥0)的結(jié)論解題.
解:( )2 = ,(3 )2 =32?( )2=32?5=45,
( )2= ,( )2= .
三、鞏固練習(xí)
計(jì)算下列各式的值:
( )2 ( )2 ( )2 ( )2 (4 )2
四、應(yīng)用拓展
例2 計(jì)算
1.( )2(x≥0) 2.( )2 3.( )2
4.( )2
分析:(1)因?yàn)閤≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;
(4)4x2-12x+9=(2x)2-2?2x?3+32=(2x-3)2≥0.
所以上面的4題都可以運(yùn)用( )2=a(a≥0)的重要結(jié)論解題.
解:(1)因?yàn)閤≥0,所以x+1>0
( )2=x+1
(2)∵a2≥0,∴( )2=a2
(3)∵a2+2a+1=(a+1)2
又∵(a+1)2≥0,∴a2+2a+1≥0 ,∴ =a2+2a+1
(4)∵4x2-12x+9=(2x)2-2?2x?3+32=(2x-3)2
又∵(2x-3)2≥0
∴4x2-12x+9≥0,∴( )2=4x2-12x+9
例3在實(shí)數(shù)范圍內(nèi)分解下列因式:
(1)x2-3 (2)x4-4 (3) 2x2-3
分析:(略)
五、歸納小結(jié)
本節(jié)課應(yīng)掌握:
1. (a≥0)是一個(gè)非負(fù)數(shù);
2.( )2=a(a≥0);反之:a=( )2(a≥0).
六、布置作業(yè)
1.教材p8 復(fù)習(xí)鞏固2.(1)、(2) p9 7.
2.選用課時(shí)作業(yè)設(shè)計(jì).
3.課后作業(yè):《同步訓(xùn)練》
九年級(jí)初中數(shù)學(xué)教學(xué)案例篇五
學(xué)習(xí)目標(biāo)
1.了解圓周角的概念.
2.理解圓周角的定理:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半.
3.理解圓周角定理的推論:半圓(或直徑)所對(duì)的圓周角是直角,90°的圓周角所對(duì)的弦是直徑.
4.熟練掌握?qǐng)A周角的定理及其推理的靈活運(yùn)用.
設(shè)置情景,給出圓周角概念,探究這些圓周角與圓心角的關(guān)系,運(yùn)用數(shù)學(xué)分類思想給予邏輯證明定理,得出推導(dǎo),讓學(xué)生活動(dòng)證明定理推論的正確性,最后運(yùn)用定理及其推導(dǎo)解決一些實(shí)際問(wèn)題
學(xué)習(xí)過(guò)程
一、 溫故知新:
(學(xué)生活動(dòng))同學(xué)們口答下面兩個(gè)問(wèn)題.
1.什么叫圓心角?
2.圓心角、弦、弧之間有什么內(nèi)在聯(lián)系呢?
二、 自主學(xué)習(xí):
自學(xué)教材p90---p93,思考下列問(wèn)題:
1、 什么叫圓周角?圓周角的兩個(gè)特征: 。
2、 在下面空里作一個(gè)圓,在同一弧上作一些圓心角及圓周角。通過(guò)圓周角的概念和度量的方法回答下面的問(wèn)題.
(1)一個(gè)弧上所對(duì)的圓周角的個(gè)數(shù)有多少個(gè)?
(2).同弧所對(duì)的圓周角的度數(shù)是否發(fā)生變化?
(3).同弧上的圓周角與圓心角有什么關(guān)系?
3、默寫圓周角定理及推論并證明。
4、能去掉"同圓或等圓"嗎?若把"同弧或等弧"改成"同弦或等弦"性質(zhì)成立嗎?
5、教材92頁(yè)思考?在同圓或等圓中,如果兩個(gè)圓周角相等,它們所對(duì)的弧一定相等嗎?為什么?
三、 典型例題:
例1、(教材93頁(yè)例2)如圖, ⊙o的直徑ab為10cm,弦ac為6cm,,∠acb的平分線交⊙o于d,求bc、ad、bd的長(zhǎng)。
例2、如圖,ab是⊙o的直徑,bd是⊙o的弦,延長(zhǎng)bd到c,使ac=ab,bd與cd的大小有什么關(guān)系?為什么?
四、 鞏固練習(xí):
1、(教材p93練習(xí)1)
解:
2、(教材p93練習(xí)2)
3、(教材p93練習(xí)3)
證明:
4、(教材p95習(xí)題24.1第9題)
五、 總結(jié)反思:
達(dá)標(biāo)檢測(cè)
1.如圖1,a、b、c三點(diǎn)在⊙o上,∠aoc=100°,則∠abc等于( ).
a.140° b.110° c.120° d.130°
(1) (2) (3)
2.如圖2,∠1、∠2、∠3、∠4的大小關(guān)系是( )
a.∠4<∠1<∠2<∠3 b.∠4<∠1=∠3<∠2
c.∠4<∠1<∠3∠2 d.∠4<∠1<∠3=∠2
3.如圖3,(中考題)ab是⊙o的直徑,bc,cd,da是⊙o的弦,且bc=cd=da,則∠bcd等于( )
a.100° b.110° c.120° d.130°
4.半徑為2a的⊙o中,弦ab的長(zhǎng)為2 a,則弦ab所對(duì)的圓周角的度數(shù)是________.
5.如圖4,a、b是⊙o的直徑,c、d、e都是圓上的點(diǎn),則∠1+∠2=_______.
(4) (5)
6.(中考題)如圖5, 于 ,若 ,則
7.如圖,弦ab把圓周分成1:2的兩部分,已知⊙o半徑為1,求弦長(zhǎng)ab.
拓展創(chuàng)新
1.如圖,已知ab=ac,∠apc=60°
(1)求證:△abc是等邊三角形.
(2)若bc=4cm,求⊙o的面積.
3、教材p95習(xí)題24.1第12、13題。
布置作業(yè)教材p95習(xí)題24.1第10、11題。