又大又粗又硬又爽又黄毛片,国产精品亚洲第一区在线观看,国产男同GAYA片大全,一二三四视频社区5在线高清

當前位置:網(wǎng)站首頁 >> 作文 >> 最新完全平方公式教案北師大 北師大完全平方公式第二課時教案(6篇)

最新完全平方公式教案北師大 北師大完全平方公式第二課時教案(6篇)

格式:DOC 上傳日期:2023-03-21 13:47:02
最新完全平方公式教案北師大 北師大完全平方公式第二課時教案(6篇)
時間:2023-03-21 13:47:02     小編:zdfb

作為一位無私奉獻的人民教師,總歸要編寫教案,借助教案可以有效提升自己的教學(xué)能力。既然教案這么重要,那到底該怎么寫一篇優(yōu)質(zhì)的教案呢?下面我?guī)痛蠹艺覍げ⒄砹艘恍﹥?yōu)秀的教案范文,我們一起來了解一下吧。

完全平方公式教案北師大 北師大完全平方公式第二課時教案篇一

經(jīng)歷探索完全平方公式的過程,進一步發(fā)展符號感和推理能力;在變式中,拓展提高;通過積極參與數(shù)學(xué)學(xué)習活動,培養(yǎng)學(xué)生自主探究能力,勇于創(chuàng)新的精神和合作學(xué)習的習慣;重點是正確理解完全平方公式(a±b)2=a2±2ab+b2,并初步運用;難點是完全平方公式的運用。

二、教學(xué)過程?:

1.檢查學(xué)生的“預(yù)習知識樹”,導(dǎo)入??課題:

師:前面學(xué)習了平方差公式,同學(xué)們對平方差公式的結(jié)構(gòu)特點、運用以及學(xué)習公式的意義有了初步的認識。今天,我們繼續(xù)學(xué)習、研究另一種“乘法公式”——完全平方公式。請拿出你的“預(yù)習知識樹”,小組內(nèi)互查并交流,在預(yù)習中有疑問的同學(xué)請詢問。

(活動:老師巡視、檢查學(xué)生的預(yù)習情況,并解答學(xué)生在預(yù)習中存在的問題)生:(互查、討論“預(yù)習知識樹”,有問題的詢問問題。)師:(老師點評學(xué)生預(yù)習情況,并出示老師做的“知識樹”,引出課題:完全平方公式。)說明:把預(yù)習提到課前,利用“知識樹”引導(dǎo)學(xué)生自學(xué),學(xué)生可以獨立思考、自主學(xué)習,也可合作交流、討論研究,這樣預(yù)習會更充分,聽講時就能有準備、有選擇;一上課,老師就檢查“預(yù)習知識樹”,了解學(xué)生新課學(xué)習情況,適當點撥,在課堂上留出更多的時間大量拓展、提高,發(fā)展學(xué)生的能力。

2.自學(xué)檢測,制造通用工具:師:下面進行自學(xué)檢測.計算:⑴(x+3)2;⑵(2x-5)2;⑶(mn+t)2;⑷(-4x+y2)2。

(活動:投影顯示練習題。)生:(四人到黑板上板演,答錯了,由學(xué)生糾正,老師再點評。)師:觀察練習,公式中的a、b可代表什么?

生:可以表示一個數(shù),也可以表示一個單項式、多項式。

說明:點評時,老師反復(fù)引導(dǎo)學(xué)生分清題目中哪部分相當于公式中的a,哪部分相當于公式中的b,就是讓學(xué)生明確“公式中的a、b可表示數(shù),也可表示一個單項式、多項式或其他的式子”的變化規(guī)律,即制造通用工具。在前面學(xué)習平方差公式時,學(xué)生應(yīng)該認識到這個道理,在這里再次強化。

師:說得非常好,明確“公式中的a、b可以表示一個數(shù),也可以表示一個單項式、多項式”的變化規(guī)律,就能正確運用公式解題了。顯然,剛做的練習題是由公式變化來的,若是變下去,能變多少道題?

生:無數(shù)道。師:最終是幾道題?生:一道。說明:這就是老師的“暗線”語言,引導(dǎo)學(xué)生明白從公式出發(fā),反映在a、b上只是取值不同,可以演變出無數(shù)道題,是“解壓”的過程,最終還是利用公式解題,所有的題目只有“一道”,只是形式不同,這又是“壓縮”的過程,把握了變化規(guī)律才能更好地解題。

師:你會變了嗎?請各小組編題。(活動:四人小組先在組內(nèi)討論、交流,再推選完成最快的兩個小組出示題目,其他小組同學(xué)練習。)說明:引導(dǎo)學(xué)生現(xiàn)場出題,一是激發(fā)學(xué)生興趣、活躍氣氛,二是驗證變化規(guī)律。

師:下面思考,如何計算:(a+b+c)2生1:可根據(jù)多項式乘以多項式來計算,就是把(a+b+c)2看做(a+b+c)(a+b+c)。

師:不錯。還有其他方法嗎?生2:也可以把其中的(a+b)兩項看成一項,變成[(a+b)+c]2的形式,就能直接運用完全平方公式了。

師:說得非常好。兩種方法都可以,但哪種更簡單呢?請你任選一種,完成練習。

生:(緊張地做題,同時找兩個學(xué)生到黑板上板演。)師:這道題若是變?yōu)?a+b+c+d)2,你會做嗎?

生:(齊答)會。師:怎么辦?生1:把其中(a+b)看做一項,(c+d)看做一項,還是利用完全平方公式解題。

生2:還有其他分組方式,如把(a+c)看做一項,(b+d)看做一項,也能直接運用公式解題。

師:方法一樣嗎?生:一樣的。師:還能變下去嗎?這樣可以變出多少道題?

生:無數(shù)道。師:最終是幾道題?生:(齊答)一道題。師:現(xiàn)在,老師相信每個學(xué)生都會解這樣的題了。課下,請同學(xué)們思考:如果把(a+b)2的指數(shù)變化一下,又可以變出多少道題,你能計算出來嗎?

(活動:投影顯示一組題目,如(a+b)3、(a+b)4……)說明:這就是老師進一步利用這個例子論證“公式中的a、b可表示數(shù),也可表示一個單項式、多項式或其他的式子”的變化規(guī)律。

3.通過大量的習題驗證通用工具,學(xué)生并且自造通用工具。

師:通過前面的檢測,看出同學(xué)們已經(jīng)基本掌握了完全平方公式。下面進入達標檢測。

(活動:投影顯示達標檢測題)1.填空:

①(2x+3y)2=______;②(14a-1)2=116a2-____+1;③當x=5,y=2,則(x+y)(x-y)-(x-y)2=_________。

2.計算:

①(-2m-n)2;②(2-3a2)(3a2-2);③(-cd+12)2;④(n+3)2-n23.計算:(x+2y+3)(x+2y-3)生:(積極

、主動地在作業(yè)?本上完成上面練習題。)師:(巡視,批閱完成快的學(xué)生的作業(yè)?,最后集體點評,只講不會的。)說明:第2①

題,可先變形為[-(2m+n)]2,再按(a+b)2的公式展開,也可直接理解成-2m與n的差,按(a-b)2計算;第2②題將(2-3a2)變形為-(3a2-2),原式可轉(zhuǎn)化為-(3a2-2)2,直接運用公式計算;第2④題把(n+3)看做a

、n看做b,逆用平方差公式也是一種解法,同時訓(xùn)練學(xué)生的逆向思維;第3題是下節(jié)課訓(xùn)練內(nèi)容,在這里可以提前,引導(dǎo)學(xué)生通過變形,得出(x+2y+3)(x+2y-3)=[(x+2y)+3]·[(x+2y)-3]=(x+2y)2-32=x2+4xy+4y2-9,這里還是把(x+2y)看做a、3看做b,進一步驗證了“通用工具”,即“解決某一類問題的一種思維方式或方法”。拓展提高還是在“變”上下功夫,要求學(xué)生能較熟練掌握,逐步達到腦算的層次,水到渠成,能力自然提高,學(xué)生就會自造“通用工具”了。

4.嫁接“知識樹”,推薦作業(yè)?。師:本節(jié)課你有什么收獲?還有什么問題嗎?

(活動:再次投影本節(jié)課“知識樹”。)生:這節(jié)課我們學(xué)習、研究了完全平方公式(a±b)2=a2±2ab+b2,知道了公式中a、b,可以是單項式也可以是多項式,能運用公式解題了,能力上又有新的提高.師:課下完成本節(jié)課的作業(yè)?.[投影顯示]思考題:計算(a+b+c)2、(a+b+c+d)2的結(jié)果,觀察有什么規(guī)律,感興趣的同學(xué)還可計算(a+b)3、(a+b)4的結(jié)果,你又能發(fā)現(xiàn)什么規(guī)律.預(yù)習指導(dǎo):①課本第38-39頁內(nèi)容,重點研究例3兩個題目的解題方法,能嘗試獨自解答課后隨堂練習或習題,②設(shè)計下節(jié)課“知識樹”,優(yōu)化本單元“知識樹”。說明:本環(huán)節(jié)是將本節(jié)課“知識樹”

移植到乘法公式的單元“知識樹”上,整體構(gòu)建知識,同時更加強化了學(xué)生的“能力樹”。作業(yè)?是推薦性的作業(yè)?,達標檢測就是“堂堂清”,學(xué)生課下只須做好預(yù)習作業(yè)?就行了,這樣會有更多自由安排的時間,發(fā)展個性。

完全平方公式教案北師大 北師大完全平方公式第二課時教案篇二

總體說明:

完全平方公式則是對多項式乘法中出現(xiàn)的較為特殊的算式的一種歸納、總結(jié).同時,完全平方公式的推導(dǎo)是初中數(shù)學(xué)中運用推理方法進行代數(shù)式恒等變形的開端,通過完全平方公式的學(xué)習對簡化某些整式的運算、培養(yǎng)學(xué)生的求簡意識有較大好處.而且完全平方公式是后繼學(xué)習的必備基礎(chǔ),不僅對學(xué)生提高運算速度、準確率有較大作用,更是以后學(xué)習分解因式、分式運算、解一元二次方程以及二次函數(shù)的恒等變形的重要基礎(chǔ),同時也具有培養(yǎng)學(xué)生逐漸養(yǎng)成嚴密的邏輯推理能力的作用.因此學(xué)好完全平方公式對于代數(shù)知識的后繼學(xué)習具有相當重要的意義.

本節(jié)是北師大版七年級數(shù)學(xué)下冊第一章《整式的運算》的第8小節(jié),占兩個課時,這是第一課時,它主要讓學(xué)生經(jīng)歷探索與推導(dǎo)完全平方公式的過程,培養(yǎng)學(xué)生的符號感與推理能力,讓學(xué)生進一步體會數(shù)形結(jié)合的思想在數(shù)學(xué)中的作用.

一、學(xué)生學(xué)情分析

學(xué)生的技能基礎(chǔ):學(xué)生通過對本章前幾節(jié)課的學(xué)習,已經(jīng)學(xué)習了整式的概念、整式的加減、冪的運算、整式的乘法、平方差公式,這些基礎(chǔ)知識的學(xué)習為本節(jié)課的學(xué)習奠定了基礎(chǔ).

學(xué)生活動經(jīng)驗基礎(chǔ):在平方差公式一節(jié)的學(xué)習中,學(xué)生已經(jīng)經(jīng)歷了探索和應(yīng)用的過程,獲得了一些數(shù)學(xué)活動的經(jīng)驗,培養(yǎng)了一定的符號感和推理能力;同時在相關(guān)知識的學(xué)習過程中,學(xué)生經(jīng)歷了很多探究學(xué)習的過程,具有了一定的獨立探究意識以及與同伴合作交流的能力.

二、教學(xué)目標

知識與技能:

(1)讓學(xué)生會推導(dǎo)完全平方公式,并能進行簡單的應(yīng)用.

(2)了解完全平方公式的幾何背景.

數(shù)學(xué)能力:

(1)由學(xué)生經(jīng)歷探索完全平方公式的過程,進一步發(fā)展學(xué)生的符號感與推理能力.

(2)發(fā)展學(xué)生的數(shù)形結(jié)合的數(shù)學(xué)思想.

情感與態(tài)度:

將學(xué)生頭腦中的前概念暴露出來進行分析,避免形成教學(xué)上的“相異構(gòu)想”.

三、教學(xué)重難點

教學(xué)重點:1、完全平方公式的推導(dǎo);

2、完全平方公式的應(yīng)用;

教學(xué)難點:1、消除學(xué)生頭腦中的前概念,避免形成“相異構(gòu)想”;

2、完全平方公式結(jié)構(gòu)的認知及正確應(yīng)用.

四、教學(xué)設(shè)計分析

本節(jié)課設(shè)計了十一個教學(xué)環(huán)節(jié):學(xué)生練習、暴露問題——驗證——推廣到一般情況,形成公式——數(shù)形結(jié)合——進一步拓廣——總結(jié)口訣——公式應(yīng)用——學(xué)生反饋——學(xué)生pk——學(xué)生反思——鞏固練習.

第一環(huán)節(jié):學(xué)生練習、暴露問題

活動內(nèi)容:計算:(a+2)2

設(shè)想學(xué)生的做法有以下幾種可能:

①(a+2)2=a2+22

②(a+2)2=a2+2a+22

③正確做法;

針對這幾種結(jié)果都將a=1代入計算,得出①②都是錯誤的,但③的做法是否一定正確呢?怎么驗證?

活動目的:在很多學(xué)生的頭腦中,認為兩數(shù)和的完全平方與兩數(shù)的平方和等同,即:

(a+2)2=a2+22,如果不將這種定式思維*,就很難建立起一個正確的概念;這一環(huán)節(jié)的目的就是讓學(xué)生的這種錯誤或其它錯誤充分暴露出來,并讓學(xué)生充分認識到自己原有的定式思維是錯誤的,為下一步構(gòu)建新的思維模式埋下伏筆.

第二環(huán)節(jié):驗證(a+2)2=a2–4a+22

活動內(nèi)容:(a+2)2=(a+2)?(a+2)=a2+2a+2a+22

活動目的:在前一環(huán)節(jié)已經(jīng)打破了學(xué)生的原有的思維定式的基礎(chǔ)上,給學(xué)生建立正確的思維方法,避免形成“相異構(gòu)想”.

第三環(huán)節(jié):推廣到一般情況,形成公式

活動內(nèi)容:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2

活動目的:讓學(xué)生經(jīng)歷從特殊到一般的探究過程,體驗到發(fā)現(xiàn)的快樂.

第四環(huán)節(jié):數(shù)形結(jié)合

活動內(nèi)容:設(shè)問:在多項式的乘法中,很多公式都都可以用幾何圖形進行解釋,那么完全平方公式怎樣用幾何圖形解釋呢?

展示動畫,用幾何圖形詮釋完全平方公式的幾何意義.

學(xué)生思考:還有沒有其它的方法來詮釋完全平方公式?(課后思考)

活動目的:讓學(xué)生進一步認識到數(shù)與形都不是孤立存在的,數(shù)與形是可以有機地結(jié)合在一起,從而發(fā)展學(xué)生的數(shù)形結(jié)合的數(shù)學(xué)思想.

第五環(huán)節(jié):進一步拓廣

活動內(nèi)容:推導(dǎo)兩數(shù)差的完全平方公式:(a–b)2=a2–2ab+b2

方法1:(a–b)2=(a–b)(a–b)=a2–ab–ab+b2=a2–2ab+b2

方法2:(a–b)2=[a+(–b)]2=a2+2a(–b)+(–b)2=a2–2ab+b2

活動目的:讓學(xué)生經(jīng)歷由兩數(shù)和的完全平方公式拓廣到兩數(shù)差的完全平方公式的過程,體會到符號差異帶來的結(jié)果差異,由第二種推導(dǎo)方法體會到兩數(shù)差的完全平方公式是兩數(shù)和的完全平方公式的應(yīng)用.

第六環(huán)節(jié):總結(jié)口訣、認識特征

活動內(nèi)容:比較兩個公式的共同點與不同點:(a+b)2=a2+2ab+b2

(a–b)2=a2–2ab+b2

特征:①左邊都是一個二項式的完全平方,兩者僅有一個符號不同;右邊都是二次三項式,其中第一、三項是公式左邊二項式中每一項的平方,中間一項是左邊二項式中兩項乘積的兩倍,兩者也僅一個符號不同;

②公式中的a、b可以是任意一個代數(shù)式(數(shù)、字母、單項式、多項式)

口訣:首平方,尾平方,首尾相乘的兩倍在中央.

活動目的:認識完全平方公式的特征,總結(jié)出完全平方公式的口訣,便于學(xué)生理解與記憶,避免學(xué)生在應(yīng)用該公式中出現(xiàn)錯誤.

第七環(huán)節(jié):公式應(yīng)用

活動內(nèi)容:例:計算:①(2x–3)2;②(4x+)2

解:①(2x–3)2=(2x)2–2?(2x)?3+32=4x2–12x+9

②(4x+)2=(4x)2+2?????(4x)+2=16x2+2xy+

活動目的:在前幾個環(huán)節(jié)中,學(xué)生對完全平方公式已經(jīng)有了感性認識,通過本環(huán)節(jié)的講解以及下一環(huán)節(jié)的練習,使學(xué)生逐步經(jīng)歷認識——模仿——再認識.從而上升到理性認識的階段.

第八環(huán)節(jié):隨堂練習

活動內(nèi)容:計算:①;②;③(n+1)2–n2

活動目的:通過學(xué)生的反饋練習,使教師能全面了解學(xué)生對完全平方公式的理解是否到位,完全平方公式的應(yīng)用是否得當,以便教師能及時地進行查缺補漏.

第九環(huán)節(jié):學(xué)生pk

活動內(nèi)容:每個學(xué)生各出五道完全平方公式的計算題給自己的同桌解答,比一比誰的準確性率高,速度快.

活動目的:活躍課堂氣氛,激起學(xué)生的好勝心,進一步鞏固學(xué)生對完全平方公式的理解與應(yīng)用.

第十環(huán)節(jié):學(xué)生反思

活動內(nèi)容:通過今天這堂課的學(xué)習,你有哪些收獲?

收獲1:認識了完全平方公式,并能簡單應(yīng)用;

收獲2:了解了兩數(shù)和與兩數(shù)差的完全平方公式之間的差異;

收獲3:感受到數(shù)形結(jié)合的數(shù)學(xué)思想在數(shù)學(xué)中的作用.

活動目的:通過對一堂課的歸納與總結(jié),鞏固學(xué)生對完全平方公式的認識,體會數(shù)學(xué)思想的精妙.

第十一環(huán)節(jié):布置作業(yè):

課本p43習題1.13

完全平方公式教案北師大 北師大完全平方公式第二課時教案篇三

說課稿是老師為了方便自己講課而寫的,有一定的步驟。下面是初中數(shù)學(xué)《完全平方公式》說課稿范文,歡迎借鑒!

今天我說課的題目是《完全平方公式》,所選用的教材為北師大版義務(wù)教育課程標準實驗教科書。

根據(jù)新課標的理念,對于本節(jié)課,我將以教什么,怎樣教,為什么這樣教為思路,從教材分析,教學(xué)目標,教學(xué)方法,教學(xué)過程四個方面加以說明。

1、教材的地位和作用

本節(jié)教材是初中數(shù)學(xué)七年級下冊第一章第八節(jié)的內(nèi)容,是初中數(shù)學(xué)的重要內(nèi)容之一。一方面,這是在學(xué)習了整式的加、減、乘、除及平方差公式的基礎(chǔ)上,對多項式乘法的進一步深入和拓展;另一方面,又為學(xué)習《因式分解》《配方法》等知識奠定了基礎(chǔ),是進一步研究《一元二次方程》《二次函數(shù)》 的工具性內(nèi)容。鑒于這種認識,我認為,本節(jié)課不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用。

2、學(xué)情分析

從心理特征來說,初中階段的學(xué)生邏輯思維能力有待培養(yǎng),從經(jīng)驗型逐步向理論型發(fā)展,觀察能力,記憶能力和想象能力也隨著迅速發(fā)展。但同時,這一階段的學(xué)生好動,注意力易分散,愛發(fā)表見解,希望得到老師的表揚,所以在教學(xué)中應(yīng)抓住這些特點,一方面運用直觀生動的形象,引發(fā)學(xué)生的興趣,使他們的注意力始終集中在課堂上;另一方面,要創(chuàng)造條件和機會,讓學(xué)生發(fā)表見解,發(fā)揮學(xué)生學(xué)習的主動性。

從認知狀況來說,學(xué)生在此之前已經(jīng)學(xué)習了多項式乘法法則、平方差公式的探索過程,對“完全平方公式”已經(jīng)有了初步的認識,為順利完成本節(jié)課的教學(xué)任務(wù)打下了基礎(chǔ),但對于“完全平方公式” 的理解,(由于其抽象程度較高,)學(xué)生可能會產(chǎn)生一定的困難,所以教學(xué)中應(yīng)予以簡單明白,深入淺出的分析。

3、教學(xué)重難點

根據(jù)以上對教材的地位和作用,以及學(xué)情分析,結(jié)合新課標對本節(jié)課的要求,我將本節(jié)課的重點確定為:

對公式(a+b) 2=a2+2ab+b2的理解,包括它的推導(dǎo)過程、結(jié)構(gòu)特點、語言表述(學(xué)生自己的語言)、幾何解釋。

難點確定為:從廣泛意義上理解完全平方公式的符號含義,培養(yǎng)學(xué)生有條理的思考和語言表達能力。

新課標指出,教學(xué)目標應(yīng)包括知識與技能目標,過程與方法目標,情感與態(tài)度目標這三個方面,而這三維目標又應(yīng)是緊密聯(lián)系的一個有機整體,學(xué)生學(xué)會知識與技能的過程同時成為學(xué)會學(xué)習,形成正確價值觀的過程,這告訴我們,在教學(xué)中應(yīng)以知識與技能為主線,滲透情感態(tài)度價值觀,并把前面兩者充分體現(xiàn)在過程與方法中。借此,我將三維目標進行整合,確定本節(jié)課的教學(xué)目標為:

1. 經(jīng)歷探索完全平方公式的過程,進一步發(fā)展符號感和推理能力。會推導(dǎo)完全平方公式,并能運用公式進行簡單的運算。

2.在探索討論、歸結(jié)總結(jié)中,培養(yǎng)學(xué)生語言表達能力、邏輯思維能力。

3. 通過主動探究,合作交流,感受探索的樂趣和成功的體驗,體會數(shù)學(xué)的合理性和嚴謹性,使學(xué)生養(yǎng)成積極思考,獨立思考的好習慣,并且同時培養(yǎng)學(xué)生積極參與對數(shù)學(xué)問題的討論并敢于表達自己的觀點。

現(xiàn)代教學(xué)理論認為,在教學(xué)過程中,學(xué)生是學(xué)習的主體,教師是學(xué)習的組織者、言道者,教學(xué)的一切活動都必須以強調(diào)學(xué)生的主動性、積極性為出發(fā)點。根據(jù)這一教學(xué)理念,結(jié)合本節(jié)課的內(nèi)容特點和學(xué)生的年齡特征,本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,以問題的提出、問題的解決為主線,始終在學(xué)生知識的“最近發(fā)展區(qū)”設(shè)置問題,倡導(dǎo)學(xué)生主動參與教學(xué)實踐活動,以獨立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題,在引導(dǎo)分析時,給學(xué)生流出足夠的思考時間和空間,讓學(xué)生去聯(lián)想、探索,從真正意義上完成對知識的自我建構(gòu)。

另外,在教學(xué)過程中,我采用多媒體輔助教學(xué),以直觀呈現(xiàn)教學(xué)素材,從而更好地激發(fā)學(xué)生的學(xué)習興趣,增大教學(xué)容量,提高教學(xué)效率。

新課標指出,數(shù)學(xué)教學(xué)過程是教師引導(dǎo)學(xué)生進行學(xué)習活動的過程,是教師和學(xué)生間互動的過程,是師生共同發(fā)展的過程。為有序、有效地進行教學(xué),本節(jié)課我主要安排以下教學(xué)環(huán)節(jié):

(1) 復(fù)習舊知,溫故知新

設(shè)計意圖:建構(gòu)注意主張教學(xué)應(yīng)從學(xué)生已有的知識體系出發(fā), 是本節(jié)課深入研究 的認知基礎(chǔ),這樣設(shè)計有利于引導(dǎo)學(xué)生順利地進入學(xué)習情境。

(2) 創(chuàng)設(shè)情境,提出問題

設(shè)計意圖:以問題串的形式創(chuàng)設(shè)情境,引起學(xué)生的認知沖突,使學(xué)生對舊知識產(chǎn)生設(shè)疑,從而激發(fā)學(xué)生的學(xué)習興趣和求知欲望‘

通過情境創(chuàng)設(shè),學(xué)生已激發(fā)了強烈的求知欲望,產(chǎn)生了強勁的學(xué)習動力,此時我把學(xué)生帶入下一環(huán)節(jié)———

(3) 發(fā)現(xiàn)問題,探求新知

設(shè)計意圖:現(xiàn)代數(shù)學(xué)教學(xué)論指出, 的教學(xué)必須在學(xué)生自主探索,經(jīng)驗歸納的基礎(chǔ)上獲得,教學(xué)中必須展現(xiàn)思維的過程性,在這里,通過 觀察分析、獨立思考、小組交流 等活動,引導(dǎo)學(xué)生歸納 。

(4) 分析思考,加深理解

設(shè)計意圖:數(shù)學(xué)教學(xué)論指出, 數(shù)學(xué)概念(定理等) 要明確其內(nèi)涵和外延(條件、結(jié)論、應(yīng)用范圍等) ,通過對定義的幾個重要方面的闡述,使學(xué)生的認知結(jié)構(gòu)得到優(yōu)化,知識體系得到完善,使學(xué)生的數(shù)學(xué)理解又一次突破思維的難點。

通過前面的學(xué)習,學(xué)生已基本把握了本節(jié)課所要學(xué)習的內(nèi)容,此時,他們急于尋找一塊用武之地,以展示自我,體驗成功,于是我把學(xué)生導(dǎo)入下一 環(huán)節(jié)。

(5) 強化訓(xùn)練,鞏固雙基

設(shè)計意圖:幾道例題及練習題由淺入深、由易到難、各有側(cè)重,其中例1……例2……,體現(xiàn)新課標提出的讓不同的學(xué)生在數(shù)學(xué)上得到不同發(fā)展的教學(xué)理念。這一環(huán)節(jié)總的設(shè)計意圖是反饋教學(xué),內(nèi)化知識。

(6) 小結(jié)歸納,拓展深化

我的理解是,小結(jié)歸納不應(yīng)該僅僅是知識的簡單羅列,而應(yīng)該是優(yōu)化認知結(jié)構(gòu),完善知識體系的一種有效手段,為充分發(fā)揮學(xué)生的主題作用,從學(xué)習的知識、方法、體驗等幾個方面進行歸納,我設(shè)計了這么三個問題:

① 通過本節(jié)課的學(xué)習,你學(xué)會了哪些知識;

② 通過本節(jié)課的學(xué)習,你最大的體驗是什么;

③ 通過本節(jié)課的學(xué)習,你掌握了哪些學(xué)習數(shù)學(xué)的方法?

(7) 布置作業(yè),提高升華

以作業(yè)的鞏固性和發(fā)展性為出發(fā)點,我設(shè)計了必做題和選做題,必做題是對本節(jié)課內(nèi)容的一個反饋,選做題是對本節(jié)課知識的一個延伸??偟脑O(shè)計意圖是反饋教學(xué),鞏固提高。

以上幾個環(huán)節(jié)環(huán)環(huán)相扣,層層深入,并充分體現(xiàn)教師與學(xué)生的交流互動,在教師的整體調(diào)控下,學(xué)生通過動腦思考、層層遞進,對知識的理解逐步深入,使課堂效益達到最佳狀態(tài)。

完全平方公式教案北師大 北師大完全平方公式第二課時教案篇四

課題名稱:完全平方公式(1)

一、內(nèi)容簡介

本節(jié)課的主題:通過一系列的探究活動,引導(dǎo)學(xué)生從計算結(jié)果中總結(jié)出完全平方公式的兩種形式。

關(guān)鍵信息:

1、以教材作為出發(fā)點,依據(jù)《數(shù)學(xué)課程標準》,引導(dǎo)學(xué)生體會、參與科學(xué)探究過程。首先提出等號左邊的兩個相乘的多項式和等號右邊得出的三項有什么關(guān)系。通過學(xué)生自主、獨立的發(fā)現(xiàn)問題,對可能的答案做出假設(shè)與猜想,并通過多次的檢驗,得出正確的結(jié)論。學(xué)生通過收集和處理信息、表達與交流等活動,獲得知識、技能、方法、態(tài)度特別是創(chuàng)新精神和實踐能力等方面的發(fā)展。

2、用標準的數(shù)學(xué)語言得出結(jié)論,使學(xué)生感受科學(xué)的嚴謹,啟迪學(xué)習態(tài)度和方法。

二、學(xué)習者分析:

1、在學(xué)習本課之前應(yīng)具備的基本知識和技能:

①同類項的定義。

②合并同類項法則

③多項式乘以多項式法則。

2、學(xué)習者對即將學(xué)習的內(nèi)容已經(jīng)具備的水平:

在學(xué)習完全平方公式之前,學(xué)生已經(jīng)能夠整理出公式的右邊形式。這節(jié)課的目的就是讓學(xué)生從等號的左邊形式和右邊形式之間的關(guān)系,總結(jié)出公式的應(yīng)用方法。

三、教學(xué)/學(xué)習目標及其對應(yīng)的課程標準:

(一)教學(xué)目標:

1、經(jīng)歷探索完全平方公式的過程,進一步發(fā)展符號感和推力能力。

2、會推導(dǎo)完全平方公式,并能運用公式進行簡單的計算。

(二)知識與技能:經(jīng)歷從具體情境中抽象出符號的過程,認識有理

數(shù)、實數(shù)、代數(shù)式、防城、不等式、函數(shù);掌握必要的運算,(包括估算)技能;探索具體問題中的數(shù)量關(guān)系和變化規(guī)律,并能運用代數(shù)式、防城、不等式、函數(shù)等進行描述。

(四)解決問題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學(xué)問題;嘗試從不同

角度尋求解決問題的方法,并能有效地解決問題,嘗試評價不同方法之間的差異;通過對解決問題過程的反思,獲得解決問題的經(jīng)驗。

(五)情感與態(tài)度:敢于面對數(shù)學(xué)活動中的困難,并有獨立克服困難

和運用知識解決問題的成功體驗,有學(xué)好數(shù)學(xué)的自信心;并尊重與理解他人的見解;能從交流中獲益。

四、教育理念和教學(xué)方式:

1、教師是學(xué)生學(xué)習的組織者、促進者、合作者:學(xué)生是學(xué)習的主人,在教師指導(dǎo)下主動的、富有個性的學(xué)習,用自己的身體去親自經(jīng)歷,用自己的心靈去親自感悟。

教學(xué)是師生交往、積極互動、共同發(fā)展的過程。當學(xué)生迷路的時

候,教師不輕易告訴方向,而是引導(dǎo)他怎樣去辨明方向;當學(xué)生登山畏懼了的時候,教師不是拖著他走,而是喚起他內(nèi)在的精神動力,鼓勵他不斷向上攀登。

2、采用“問題情景—探究交流—得出結(jié)論—強化訓(xùn)練”的模式

展開教學(xué)。

3、教學(xué)評價方式:

(1)通過課堂觀察,關(guān)注學(xué)生在觀察、總結(jié)、訓(xùn)練等活動中的主

動參與程度與合作交流意識,及時給與鼓勵、強化、指導(dǎo)和矯正。

(2)通過判斷和舉例,給學(xué)生更多機會,在自然放松的狀態(tài)下,

揭示思維過程和反饋知識與技能的掌握情況,使老師可以及時診斷學(xué)情,調(diào)查教學(xué)。

(3)通過課后訪談和作業(yè)分析,及時查漏補缺,確保達到預(yù)期的

教學(xué)效果。

五、教學(xué)媒體:多媒體六、教學(xué)和活動過程:

教學(xué)過程設(shè)計如下:

〈一〉、提出問題

[引入]同學(xué)們,前面我們學(xué)習了多項式乘多項式法則和合并同類項法則,通過運算下列四個小題,你能總結(jié)出結(jié)果與多項式中兩個單項式的關(guān)系嗎?

(2m+3n)2=_______________,(-2m-3n)2=______________,

(2m-3n)2=_______________,(-2m+3n)2=_______________。

〈二〉、分析問題

1、[學(xué)生回答]分組交流、討論

(2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2,

(2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。

(1)原式的特點。

(2)結(jié)果的項數(shù)特點。

(3)三項系數(shù)的特點(特別是符號的特點)。

(4)三項與原多項式中兩個單項式的關(guān)系。

2、[學(xué)生回答]總結(jié)完全平方公式的語言描述:

兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;

兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。

3、[學(xué)生回答]完全平方公式的數(shù)學(xué)表達式:

(a+b)2=a2+2ab+b2;

(a-b)2=a2-2ab+b2.

〈三〉、運用公式,解決問題

1、口答:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習積極性)

(m+n)2=____________,(m-n)2=_______________,

(-m+n)2=____________,(-m-n)2=______________,

(a+3)2=______________,(-c+5)2=______________,

(-7-a)2=______________,(0.5-a)2=______________.

2、判斷:

①(a-2b)2=a2-2ab+b2

②(2m+n)2=2m2+4mn+n2

③(-n-3m)2=n2-6mn+9m2

④(5a+0.2b)2=25a2+5ab+0.4b2

⑤(5a-0.2b)2=5a2-5ab+0.04b2

⑥(-a-2b)2=(a+2b)2

⑦(2a-4b)2=(4a-2b)2

⑧(-5m+n)2=(-n+5m)2

3、小試牛刀

①(x+y)2=______________;②(-y-x)2=_______________;

③(2x+3)2=_____________;④(3a-2)2=_______________;

⑤(2x+3y)2=____________;⑥(4x-5y)2=______________;

⑦(0.5m+n)2=___________;⑧(a-0.6b)2=_____________.

〈四〉、[學(xué)生小結(jié)]

你認為完全平方公式在應(yīng)用過程中,需要注意那些問題?

(1)公式右邊共有3項。

(2)兩個平方項符號永遠為正。

(3)中間項的符號由等號左邊的兩項符號是否相同決定。

(4)中間項是等號左邊兩項乘積的2倍。

〈五〉、冒險島:

(1)(-3a+2b)2=________________________________

(2)(-7-2m)2=__________________________________

(3)(-0.5m+2n)2=_______________________________

(4)(3/5a-1/2b)2=________________________________

(5)(mn+3)2=__________________________________

(6)(a2b-0.2)2=_________________________________

(7)(2xy2-3x2y)2=_______________________________

(8)(2n3-3m3)2=________________________________

〈六〉、學(xué)生自我評價

[小結(jié)]通過本節(jié)課的學(xué)習,你有什么收獲和感悟?

本節(jié)課,我們自己通過計算、分析結(jié)果,總結(jié)出了完全平方公式。在知識探索的過程中,同學(xué)們積極思考,大膽探索,團結(jié)協(xié)作共同取得了進步。

〈七〉[作業(yè)]p34隨堂練習p36習題

完全平方公式教案北師大 北師大完全平方公式第二課時教案篇五

教學(xué)目標

1、知識與技能:體會公式的發(fā)現(xiàn)和推導(dǎo)過程,了解公式的幾何背景,理解公式的本質(zhì),會應(yīng)用公式進行簡單的計算.

2、過程與方法:通過讓學(xué)生經(jīng)歷探索完全平方公式的過程,培養(yǎng)學(xué)生觀察、發(fā)現(xiàn)、歸納、概括、猜想等探究創(chuàng)新能力,發(fā)展推理能力和有條理的表達能力.培養(yǎng)學(xué)生的數(shù)形結(jié)合能力.

3、情感態(tài)度價值觀:體驗數(shù)學(xué)活動充滿著探索性和創(chuàng)造性,并在數(shù)學(xué)活動中獲得成功的體驗與喜悅,樹立學(xué)習自信心.

教學(xué)重難點

教學(xué)重點:

1、對公式的理解,包括它的推導(dǎo)過程、結(jié)構(gòu)特點、語言表述(學(xué)生自己的語言)、幾何解釋.

2、會運用公式進行簡單的計算.

教學(xué)難點:

1、完全平方公式的推導(dǎo)及其幾何解釋.

2、完全平方公式的結(jié)構(gòu)特點及其應(yīng)用.

教學(xué)工具

課件

教學(xué)過程

一、復(fù)習舊知、引入新知

問題1:請說出平方差公式,說說它的結(jié)構(gòu)特點.

問題2:平方差公式是如何推導(dǎo)出來的?

問題3:平方差公式可用來解決什么問題,舉例說明.

問題4:想一想、做一做,說出下列各式的結(jié)果.

(1)(a+b)2(2)(a-b)2

(此時,教師可讓學(xué)生分別說說理由,并且不直接給出正確評價,還要繼續(xù)激發(fā)學(xué)生的學(xué)習興趣.)

二、創(chuàng)設(shè)問題情境、探究新知

一塊邊長為a米的正方形實驗田,因需要將其邊長增加b米,形成四塊實驗田,以種植不同的新品種.(如圖)

(1)四塊面積分別為:、;

(2)兩種形式表示實驗田的總面積:

①整體看:邊長為的大正方形,s=;

②部分看:四塊面積的和,s=.

總結(jié):通過以上探索你發(fā)現(xiàn)了什么?

問題1:通過以上探索學(xué)習,同學(xué)們應(yīng)該知道我們提出的問題4正確的結(jié)果是什么了吧?

問題2:如果還有同學(xué)不認同這個結(jié)果,我們再看下面的問題,繼續(xù)探索.(a+b)2表示的意義是什么?請你用多項式的乘法法則加以驗證.

(教學(xué)過程中教師要有意識地提到猜想、感覺得到的不一定正確,只有再通過驗證才能得出真知,但還是要鼓勵學(xué)生大膽猜想,發(fā)表見解,但要驗證)

問題3:你能說說(a+b)2=a2+2ab+b2

這個等式的結(jié)構(gòu)特點嗎?用自己的語言敘述.

(結(jié)構(gòu)特點:右邊是二項式(兩數(shù)和)的平方,右邊有三項,是兩數(shù)的平方和加上這兩數(shù)乘積的二倍)

問題4:你能根據(jù)以上等式的結(jié)構(gòu)特點說出(a-b)2等于什么嗎?請你再用多項式的乘法法則加以驗證.

總結(jié):我們把(a+b)2=a2+2ab+b2(a–b)2=a2–2ab+b2稱為完全平方公式.

問題:①這兩個公式有何相同點與不同點?②你能用自己的語言敘述這兩個公式嗎?

語言描述:兩數(shù)和(或差)的平方等于這兩數(shù)的平方和加上(或減去)這兩數(shù)積的2倍.

強化記憶:首平方,尾平方,首尾二倍放中央,和是加來差是減.

三、例題講解,鞏固新知

例1:利用完全平方公式計算

(1)(2x-3)2(2)(4x+5y)2(3)(mn-a)2

解:(2x-3)2=(2x)2-2o(2x)o3+32

=4x2-12x+9

(4x+5y)2=(4x)2+2o(4x)o(5y)+(5y)2

=16x2+40xy+25y2

(mn-a)2=(mn)2-2o(mn)oa+a2

=m2n2-2mna+a2

交流總結(jié):運用完全平方公式計算的一般步驟

(1)確定首、尾,分別平方;

(2)確定中間系數(shù)與符號,得到結(jié)果.

四、練習鞏固

練習1:利用完全平方公式計算

練習2:利用完全平方公式計算

練習3:

(練習可采用多種形式,學(xué)生上黑板板演,師生共同評價.也可學(xué)生獨立完成后,學(xué)生互相批改,力求使學(xué)生對公式完全掌握,如有學(xué)生出現(xiàn)問題,學(xué)生、教師應(yīng)及時幫助.)

五、變式練習

六、暢談收獲,歸納總結(jié)

1、本節(jié)課我們學(xué)習了乘法的完全平方公式.

2、我們在運用公式時,要注意以下幾點:

(1)公式中的字母a、b可以是任意代數(shù)式;

(2)公式的結(jié)果有三項,不要漏項和寫錯符號;

(3)可能出現(xiàn)①②這樣的錯誤.也不要與平方差公式混在一起.

七、作業(yè)設(shè)置

完全平方公式教案北師大 北師大完全平方公式第二課時教案篇六

學(xué)習了乘法公式中的完全平方,一個是兩數(shù)和的平方,另一個是兩數(shù)差的平方,兩者僅一個“符號”不同.相乘的結(jié)果是兩數(shù)的平方和,加上(或減去)兩數(shù)的積的2倍,兩者也僅差一個“符號”不同,運用完全平方公式計算時,要注意:

(1)切勿把此公式與平方差公式混淆,而隨意寫.

(2)切勿把“乘積項”2ab中的2丟掉.

(3)計算時,要先觀察題目是否符合公式的條件.若不符合,應(yīng)先變形為符合公式的條件的形式,再利用公式進行計算;若不能變?yōu)榉蠗l件的形式,則應(yīng)運用乘法法則進行計算.

今后在教學(xué)中?,要注意以下幾點:

1.讓學(xué)生自編幾道符合平方差公式結(jié)構(gòu)的計算題,目的是辨認題目的結(jié)構(gòu)特征.

2.引入完全平方公式,讓學(xué)生用文字概括公式的內(nèi)容,培養(yǎng)抽象的數(shù)字思維能力.

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔
你可能感興趣的文章
a.付費復(fù)制
付費獲得該文章復(fù)制權(quán)限
特價:5.99元 10元
微信掃碼支付
已付款請點這里
b.包月復(fù)制
付費后30天內(nèi)不限量復(fù)制
特價:9.99元 10元
微信掃碼支付
已付款請點這里 聯(lián)系客服