無論是身處學校還是步入社會,大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。相信許多人會覺得范文很難寫?這里我整理了一些優(yōu)秀的范文,希望對大家有所幫助,下面我們就來了解一下吧。
的倍數(shù)的特征教學反思篇一
生:不能。那樣的話永遠也研究不了,自然數(shù)太多了,是無限的。
師:那怎么辦呢?
(同桌討論)。
生:我們可以先研究小范圍里面的數(shù)。再推廣。
師:他的想法真棒!那我們就先確定一個比較小的范圍1-100,看看這100個數(shù)里2和5的倍數(shù)有哪些特征。
生:(凌亂地回答)是!
(同桌討論)。
生:可以找一個數(shù)看一看。
師:找怎樣的數(shù)呢?怎么看一看呢?誰能說得更明白呢?
生:就是找一個末尾是0或者5的數(shù),然后除以5看看,能不能除得盡。
師:哦,如果找不到這樣的數(shù),那說明——在大范圍里面也適合。
如果找得到這樣的數(shù),那就是有了反例,說明——在大范圍里面不適合。
(學生在本子上舉例)。
……。
師:我們舉了大量的例子,沒有找到反例。那現(xiàn)在我們可以得出怎樣的結(jié)論了呢?
生:所有5的倍數(shù),個位上的數(shù)字都是5或0。
師:誰能完整地說一說呢?在怎樣的范圍內(nèi)呢?
生:在自然數(shù)中,個位上的數(shù)字是5或0,那這個數(shù)一定是5的倍數(shù)。
師:當然,我們研究的是不是0的自然數(shù)。
……(練習)。
(同桌討論,教師巡視并啟發(fā))。
生1:我們先確定了一個范圍。
師:為什么呢?
生1:因為不確定范圍的話,數(shù)太多了,不可能研究得完。
生2:我們找到了這個范圍內(nèi)5的倍數(shù)特征后,就把范圍擴大到所有不是0的自然數(shù),進行了猜想。
生3:猜想后,我們又進行了驗證。
師:我們是用怎樣的方法進行驗證的呢?
生4:舉例。看看有沒有反例。
師:說得真好,最后我們才得出了結(jié)論——在所有不是0的自然數(shù)中,5的倍數(shù)的特征是個位上5或0。然后運用這些結(jié)論能快速判斷。
師:誰能完整地把這個研究過程說一說呢?(同桌說——全班說)。
……。
師:那2個倍數(shù)特征我們怎么研究呢?
生:也是先確定范圍,尋找一定范圍內(nèi)的2的倍數(shù)特征。然后擴大范圍,舉例,尋找反例,最后得出結(jié)論。
師:那我們就用這樣的研究方法,四人一小組開始研究2的倍數(shù)的特征。
……。
從以上的教學過程中,可以看到掌握2、5的倍數(shù)的特征不是本節(jié)課的唯一目標,在制定目標的時候,還從數(shù)學研究方法這個方面著手,在學生掌握知識的同時,更注重讓學生了解科學的數(shù)學研究的過程。
我們知道,一堂課的知識目標是很容易達成的,但是如果要滲透數(shù)學思想方法或科學的研究方法,往往會給我們一線教師帶來很多困難。在這節(jié)課中,教師引導學生通過“猜想——驗證——結(jié)論”三個流程進行研究,最后得到正確的數(shù)學結(jié)果,并進行應用。
1、滲透“范圍”意識。
當我們說要研究2、5的倍數(shù)的特征時,學生想當然地會認為只要一個數(shù)一個數(shù)地研究就可以了。如果讓他們實際操作,他們很可能會寫了幾個數(shù)后,就下結(jié)論,當然這時候他們下的結(jié)論也很可能是正確的。大部分老師在這樣的情況下,就會肯定學生的結(jié)論,然后進行練習鞏固。
但是教師并沒有滿足于此,而是抱著科學嚴謹?shù)膽B(tài)度。僅僅幾個數(shù)就能得出結(jié)論了嗎?答案顯然是否定的,一項結(jié)論的得出不是這樣草率的。如果教師如此這般教學,一次兩次不要緊,長久以來,學生也會形成草率的態(tài)度,以偏概全,缺乏一種科學的嚴謹,這是很可怕的。
所以我們看到,首先教師引導學生確定了“小范圍”的意識,在數(shù)據(jù)比較多的時候,我們可以先確定一個范圍,在有限的時間里研究這個范圍中的數(shù)的特征,得到在1-100這個范圍內(nèi)5的倍數(shù)的特征,個位上的數(shù)字是5或0。這時候教師沒有滿足于此,而是引導學生認識到這個結(jié)論僅僅適用于1-100這個小范圍,是不是在所有不等于0的自然數(shù)中都使用呢?還需要研究。所以接下來在教師的引導下,學生開始認識到還要繼續(xù)拓展范圍,研究大于100的自然數(shù)中所有5的倍數(shù)是不是也是個位上的數(shù)字是5或0。只有進行了研究,才能得到正確的結(jié)論,最后在學習和生活中進行應用。
在這一過程中,學生感受到了科學嚴謹?shù)膽B(tài)度,同時有了一定的“范圍”意識,知道了在進行一項數(shù)目巨大的研究過程中,可以從小范圍入手,得到一定的猜想,然后逐漸擴范圍大,最后得出科學的結(jié)論。相信長此以往,學生會逐漸明確范圍意識,建立科學嚴謹?shù)膽B(tài)度的。
2、感受“猜想”與“結(jié)論”的不同。
在教學2、5的倍數(shù)的特征之前,教師找了幾個學生訪談,想了解學生學習的前在狀態(tài),當然所找的學生是各種層次都有的。對于2、5的倍數(shù)的特征,應該說比較簡單,所以中等學生和優(yōu)等生都已經(jīng)知道了它們的特征——2的倍數(shù)肯定是雙數(shù),5的倍數(shù)末尾是5或0,只有個別學困生一無所知。同時有個奇怪的現(xiàn)象,所有知道這個結(jié)論的同學都認為這個結(jié)論非常正確,以后就能用這個結(jié)論來進行判斷,不需要進行驗證,當然他們的結(jié)論獲得也僅僅是“知道”的過程,沒有經(jīng)歷“探究”過程。如果長此以往,學生僅僅是知識的接受者,而不是知識的探究者,以后將只習慣于被動接受,而不會主動發(fā)現(xiàn)。
有了這樣的猜想,最后通過舉例的方法驗證后,學生沒有找到反例,這時教師才告訴學生,一開始的猜想現(xiàn)在變成了結(jié)論。雖然同樣是一句話,不同的時候有不同的界定,沒有經(jīng)過驗證前,只是猜想;只有研究后,猜想才可能變成結(jié)論。
相信學生不斷經(jīng)歷這種過程后,他們才會具備科學的態(tài)度,才會學會對自己所說的話負責,才不會貿(mào)然下結(jié)論,當然我們教師也要鼓勵學生大膽猜想。
從這節(jié)課中,我們看到,當學生擴大范圍,研究比100大的5的倍數(shù)的特征時,教師就引導可以用舉例的方法來研究,尋找有沒有不符合這一特征的例子,如果有,說明一開始的猜想是錯誤的;全班舉了無數(shù)個例子,如果沒有,那么在小學階段,可以認為是正確的。這樣,當下節(jié)課研究3的倍數(shù)的特征時,學生就會大膽猜想,并有方法來驗證自己的猜想了。
隨著時代的發(fā)展,隨著新課改的不斷深入,我們教師在制定教學目標時,不要再僅僅關(guān)注學生知識目標,更重要的是要關(guān)注學生的能力目標,只有從小培養(yǎng),從小滲透,那么我們學生對數(shù)學的認識才會更深刻,也才會在數(shù)學上有更大的造詣。
的倍數(shù)的特征教學反思篇二
這一周我和學生一起學習了《2、5的倍數(shù)的特征》這一課,教學時通過游戲的情境很好地激發(fā)學生的求知欲,探究新知的熱情,學生借助“百數(shù)表”分別直觀地找出2和5的倍數(shù),通過合作和獨立思考的方式概括出2和5的倍數(shù)特征,再舉例比100大的'數(shù)加以驗證,以“猜想——驗證——結(jié)論”的學習方式符合學生的認知特點,結(jié)合2的倍數(shù)特征,進而讓學生認識、理解奇數(shù)和偶數(shù)含義,再通過游戲獲得‘既是2又是5的倍數(shù)特征’讓學生應用所學的知識解決數(shù)學簡單的生活問題,達到了教學目標。
學生在學習中,體驗了探索的成功樂趣,也對數(shù)學產(chǎn)生的興趣。對學習3的倍數(shù)打下了基礎(chǔ)。當然本節(jié)課的教學不失為一堂指導學生進行探究性學習的課,但我總怕學生在這節(jié)課里不能很好的接受知識,所以在個別應放手的地方卻還在牽著學生走。總結(jié)性的語言也顯得有些不夠。在以后的教學中應力爭避免此種情況的發(fā)生也有一部分學生容易混淆倍數(shù)的特征。這還有需要我們進一步的學習鞏固中改變。我相信只要有信心,有方法,什么困難我們都能克服的。
的倍數(shù)的特征教學反思篇三
在學習這個內(nèi)容之前,學生已經(jīng)學習了2、5的倍數(shù)的特征。但是3的倍數(shù)的特征與錢不同,2、5的倍數(shù)的特征是看個數(shù)上的數(shù)字,而3的倍數(shù)的特征不再是看個位上的數(shù)字,而是看各位上的數(shù)字之和。在學習了2、5的倍數(shù)的特征的.前提下來學習3的倍數(shù)的特征很容易會跟2、5的一樣。根據(jù)這一初步的認識沖突,在課堂上我采取了以下教學措施。
與教學“2、5的倍數(shù)特征”類似,我要求學生課前做好充分的預習工作:在附頁的方格紙上寫出1-100的數(shù),找出3的倍數(shù)并涂上顏色,并觀察發(fā)現(xiàn)有什么特征,如下:
復習引入,設(shè)置懸念。
出示:用3,5,6數(shù)字卡片擺成符合要求的三位數(shù)依次出示:
擺成2的倍數(shù)(學生回答356536并說原因)。
擺成5的倍數(shù)(學生回答365635并說原因)。
【設(shè)計意圖:回顧2,5的倍數(shù)的特征】。
擺成3的倍數(shù)(學生回答563,653,356,536并說原因:個位上是3、6;有學生提出質(zhì)疑,產(chǎn)生沖突)。
問:個位上是3,6或9的數(shù)是不是3的倍數(shù)?
學生驗證,發(fā)現(xiàn)這四個數(shù)都不是3的倍數(shù)。
問:3的倍數(shù)是不是看各位上的數(shù)呢它到底有什么特征?
合作探究。
在100以內(nèi)的數(shù)中,任意選取幾個3的倍數(shù)的數(shù),小組合作完成表格:
3的倍數(shù)有。
各數(shù)位上,數(shù)的和。
和是不是3的倍數(shù)。
12。
1+2=3。
是
匯報交流:你發(fā)現(xiàn)了什么?
得出結(jié)論:一個數(shù)各數(shù)位上數(shù)的和是3的倍數(shù),這個數(shù)就是3的倍數(shù)。例如:54,因為5+4=9,9是3的倍數(shù),所以54是3的倍數(shù)。
1,基礎(chǔ)練習:
(1)判斷下列數(shù)是不是3的倍數(shù)(4213426878)。
學生回答:例。
42是3的倍數(shù),134不是3的倍數(shù),
因為4+2=6,6是3的倍數(shù),因為1+3+4=8,8-不是3的倍數(shù)。
所以42是3的倍數(shù)。所以134不是3的倍數(shù)。
(2)師生互動猜數(shù)游戲:老師說一個數(shù),學生判斷是否為3的倍數(shù);學生說一個數(shù),老師判斷;同桌判斷,男女生判斷。
(3)在下面的方框里填上一個數(shù)字,使這個數(shù)是3的倍數(shù)。
2,有關(guān)于2,5,3的倍數(shù)的特征的比較,綜合練習。
本節(jié)課能從認識沖突上找到突破點,再小組合作通過填寫表格引導學生去發(fā)現(xiàn)3的倍數(shù)的特征,學生能夠清晰的區(qū)分和判別3的倍數(shù),并與2、5的倍數(shù)作比較,真正理解和辨別這幾個數(shù)的倍數(shù)的特征,學生的掌握情況還是不錯的。
的倍數(shù)的特征教學反思篇四
這節(jié)課新授知識較為簡單,很適合讓學生預習。所以課前我印制了百數(shù)表讓學生圈出5的倍數(shù)和2的倍數(shù),并設(shè)計了兩個問題:1、觀察5的倍數(shù),想想這些數(shù)有什么特征?2、觀察2的倍數(shù),又有什么特征呢?一上課就小組交流這兩個問題,同學們興致高漲,足以看出預習效果是很好的。通過這樣的教學,節(jié)省了很多時間,課堂作業(yè)可以當堂完成。從作業(yè)情況來看,大部分同學做得還不錯。一小部分同學運用知識的能力欠佳,比如:寫出5個奇數(shù)是這樣寫的:5、15、25、35、45.雖然這樣寫不能算錯,但是這些學生可能對5的倍數(shù)與奇數(shù)的概念有些混淆。
在0、1、5、8,四張卡片中選出兩張數(shù)字卡片,按要求組成兩位數(shù)。
1、組成的數(shù)是偶數(shù)的有()。
2、組成的數(shù)是5的倍數(shù)的有()。
3、組成的數(shù)既是2的倍數(shù)、又是5的倍數(shù)的有()。
這道題部分同學答案不全,想想還是正常的,其實這道題對于中等以下的學生來說確實有難度的。
的倍數(shù)的特征教學反思篇五
在教學中,當學生找到百數(shù)表內(nèi)5的倍數(shù)特征時,我追問學生,“是不是在所有的自然數(shù)中,5的倍數(shù)都有這個特征呢?”學生異口同聲地都認為是。這里就需要教師幫助學生養(yǎng)成嚴謹科學的學習態(tài)度。我告訴學生是不是有這個特征,我們沒有研究過,只是我們的猜想。還需要我們進一步去驗證。大部分學生還是比較認可的。沒有經(jīng)過研究,怎么能知道是呢?有了這樣的猜想,最后通過舉例的方法驗證后,學生沒有找到反例,這時我才告訴學生,一開始的猜想現(xiàn)在變成了結(jié)論。雖然同樣是一句話,不同的時候有不同的界定,沒有經(jīng)過驗證前,只是猜想;只有驗證后,猜想才可能變成結(jié)論。相信學生不斷經(jīng)歷這種過程后,他們才會具備科學的態(tài)度,才會學會對自己所說的話負責,才不會貿(mào)然下結(jié)論。
這節(jié)課中,當學生研究出5的倍數(shù)的特征后,我引導學生來回憶。我們是怎樣來研究5的倍數(shù)的特征的?讓學生體驗經(jīng)歷“找數(shù)——觀察——猜想——百數(shù)表中驗證——更大數(shù)驗證——結(jié)論”這一研究過程,然后讓學生獨立去研究2的倍數(shù)的特征,再次體驗2的倍數(shù)的特征研究過程,我想學生就有了更完整的體驗。
整節(jié)課學生經(jīng)歷了“觀察,動手,發(fā)現(xiàn)規(guī)律、驗證規(guī)律、得出結(jié)論,運用規(guī)律”的過程。著名數(shù)學家波利亞說過:“學習任何知識的最佳途徑是由學生自己去發(fā)現(xiàn)。因為這種發(fā)現(xiàn),理解最深刻,也最容易掌握其中的`內(nèi)在規(guī)律聯(lián)系。”離開了學生的學習活動,學生的發(fā)展將是空中樓閣。通過活動落實教學任務(wù),讓學生用自己的思維方式去探究,自己去體驗,能有效促進學生主體的發(fā)展。學生經(jīng)歷和感悟“觀察,動手實踐,發(fā)現(xiàn)規(guī)律、驗證規(guī)律、得出結(jié)論”的學習過程比學到的數(shù)學知識更有價值。如果教學中能長期堅持運用這些學習方法,而且學生一旦形成自己自主的學習方式,那將是非??少F的。
1.2和5倍數(shù)的特征,都在個位數(shù),學生極易理解和掌握,奇數(shù)、偶數(shù)的概念,學生掌握也并不困難,所以這部分內(nèi)容的學習從學生已有的知識經(jīng)驗出發(fā),創(chuàng)設(shè)有助于學生自主學習、合作交流的情境,使學生經(jīng)歷觀察、操作、歸納、類比、猜想、交流、反思等數(shù)學活動,獲得基本的數(shù)學知識和技能,發(fā)展思維能力,激發(fā)學習的興趣,增強學好數(shù)學的信心。出現(xiàn)疑難問題或意見不一時,通過小組或集體討論解決,教師發(fā)揮引導的作用,消除學生的疑惑;關(guān)注學生的個體差異,使不同層次的學生在練習中獲得不同的發(fā)展,體驗成功的喜悅。
2.學習方法的指導非常必要,讓學生感受數(shù)學是一門嚴謹?shù)膶W科,數(shù)學研究的方法就在平時的學習中,并不神秘,為學生以后的數(shù)學研究打下良好的基礎(chǔ)。
的倍數(shù)的特征教學反思篇六
今天我教學了3的倍數(shù)的特征,我首先復習2、5的倍數(shù)的特征,然后我出示了幾個不同的四位數(shù),問生:誰能很快判斷出哪些是3的倍數(shù)?想知道有什么竅門嗎?這們引入課題很順當,學生也很有興趣。下面,我先讓學生寫出50以內(nèi)3的倍數(shù),再觀察:3的倍數(shù)有什么特點?學生一時很難發(fā)現(xiàn),仍從個位上的數(shù)去觀察,但馬上被其他同學否定,當時我心里有點擔心怎么看不來呢?,我啟發(fā)學生再看看個位和十位上的數(shù),通過交流后,在部分學生馬上發(fā)現(xiàn)把每個數(shù)的數(shù)字加起來的和除以3都是正好除的,我讓學生用這個發(fā)現(xiàn)對書上第76頁的表格100以內(nèi)的數(shù)進行驗證一下,學生驗證后我又讓學生從100以外的數(shù)來驗證。從而得出了3的倍數(shù)的特征。再通過用1、2、6可以寫成哪些三位數(shù)?這些三位數(shù)是3的倍數(shù)嗎?由此有什么發(fā)現(xiàn)?讓學生進一步明白3的倍數(shù)跟數(shù)字的位置沒有關(guān)系,只跟各位上數(shù)的和有關(guān)系。這樣學生在完成想想做做第5題時學生思考時就不會漏寫了。最后,通過后面的練習,我覺得在教學某些知識時,最好老師不要輕易下結(jié)論,只有讓他們自己在反復實踐中自己得出結(jié)論,才能牢固地掌握知識。
的倍數(shù)的特征教學反思篇七
《3的倍數(shù)的特征》的教學是五年級數(shù)學上冊第三單元“因數(shù)與倍數(shù)”中一個重要知識點,是學生在學習了2和5的倍數(shù)特征之后的新內(nèi)容。
3的倍數(shù)的特征與2和5的倍數(shù)的特征有很大差別,2和5的倍數(shù)的特征僅僅體現(xiàn)在個位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學生理解起來有一定的困難。我在本節(jié)課設(shè)計理念上,突出以學生為主體,教師為主導,方法為主線的原則,從現(xiàn)象到本質(zhì),從質(zhì)疑到解疑。當然本節(jié)課也存在很多問題,下面我進行做幾點反思。
在導入環(huán)節(jié),我通過復習舊知識進行“熱身”。由于學生已經(jīng)掌握了2和5倍數(shù)的特征,知道只要看一個數(shù)的個位就能判斷一個數(shù)是不是2或5的倍數(shù),因此在學習3的倍數(shù)特征時,自然會把“看個位”這一方法遷移過來,盡管是負遷移。實際上,鮮明的沖突讓學生發(fā)現(xiàn)卻不是這樣,于是新舊知識間的矛盾沖突使學生產(chǎn)生了困惑,有了新舊知識的矛盾沖突,就能激發(fā)起學生探究的愿望,這樣有利于學生對新知識的掌握,有效的將新知識納入到原有的認知結(jié)構(gòu)中去,還有利于培養(yǎng)學生深入探究的意識和能力。
猜想3的倍數(shù)特征是基礎(chǔ),在學生得出猜想后,我便引導學生找出百數(shù)表中3的倍數(shù)去驗證,并在驗證中推翻了剛才的猜想。驗證也是有技巧的,30以內(nèi)即可發(fā)現(xiàn)3的倍數(shù)中,個位上可能是10個數(shù)字中的任何一個,之前的判斷已經(jīng)站不住腳。之后繼續(xù)探究,在100以內(nèi),基本可以發(fā)現(xiàn)規(guī)律,但為了嚴謹,必須跳出百數(shù)表,在100以上的數(shù)中去驗證這個規(guī)律。最后,引導學生理解這個結(jié)論背后的原理,為什么它的規(guī)律和之前的規(guī)律不一樣?這樣一來,學生不僅學會本節(jié)課知識,更掌握了科學的探究方法。
本節(jié)課的目標定位上,我考慮到學生的已有認知基礎(chǔ),我決定引導學生探索3的倍數(shù)的特征背后的道理。這一嘗試建立在我對學生學情把握的基礎(chǔ)上,因為3的倍數(shù)的特征的結(jié)論一但得出,運用起來沒有難度,后面的練習往往成了“休閑時間”,而進一步提升探索難度,無疑是開發(fā)思維的良好契機。我運用數(shù)形結(jié)合的.方法逐步深入,最后還是把話語權(quán)留給學生,這樣就給予不同學生各自適應的個性化學習方略,真正做到了讓每位同學在數(shù)學上都得到發(fā)展。
的倍數(shù)的特征教學反思篇八
《3的倍數(shù)的特征》看似一節(jié)知識簡單的課,但從教學實際來看,是我想得過于簡單了,教師注重的不應該僅僅是對知識的掌握,更應該使學生站在跳板上學習數(shù)學,關(guān)注數(shù)學思維的發(fā)展。
新的課程理念要求我們在教學中盡可能地為學生提供一個自主、合作、探究機會,其宗旨也就在于培養(yǎng)學生在實際的學習活動中,善于發(fā)現(xiàn)問題和提出問題的能力,靈活運用知識去解決問題的能力,在研究和解決問題的過程中學會合作。3的倍數(shù)的特征,有規(guī)律可循,容易上成機械刻板、枯燥無味的課,學生雖能死套規(guī)律判斷,但學生的能力沒能培養(yǎng),智力得不到開發(fā)。本課的設(shè)計采用了啟發(fā)與發(fā)現(xiàn)相結(jié)合的教學方法,激勵學生大膽猜想,動手實踐,去發(fā)現(xiàn)規(guī)律,形成技能,升華至應用于生活。
2、5的倍數(shù)特征一樣,看一個數(shù)的末尾了,引導學生是不是要看這個數(shù)其它的數(shù)位上的數(shù)呢?學生發(fā)現(xiàn)也不是很難。教材中有提示,學生回家預習后也會清楚敘述出3的倍數(shù)特征是一個數(shù)各個數(shù)位上數(shù)字相加的和。找準知識之間的沖突并巧妙激發(fā)出來,這是一節(jié)課的出彩之處,剛開始我們先采用課本上百數(shù)表來研究,結(jié)果在一個班實踐后認為效果并不是很理想,由于數(shù)太多,讓學生觀察3的倍數(shù)的這些數(shù)時,并從中找出相同的地方,結(jié)果,很多同學找了與本節(jié)課毫無關(guān)系的東西,浪費了很多時間。在評課的時候,我們又討論是不是找一些數(shù)代表百數(shù)表,于是我設(shè)計了一個表格,讓學生用除法計算的方法找到3的倍數(shù)的特征,并觀察這些數(shù),這些數(shù)的個位分別從0到9都有,讓學生知道3的倍數(shù)的特征跟數(shù)的個位沒有關(guān)系,然后從中又把像45和54,75和57,123和321等特殊的數(shù)單獨展示出來,讓學生觀察從中找出規(guī)律。結(jié)果我又重新上了這節(jié)課,效果比上節(jié)課要好。
這節(jié)課結(jié)束后,我感覺最大的缺憾之處,最后總結(jié)3的倍數(shù)特征時,應放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。而練習題方面,也應形式面多樣化,如用卡片練習判斷,或通過打手勢的方法或先聽老師——這樣效率更高,課堂氛圍好,課堂不是同步,學生的發(fā)展始終是教學的落腳點。我們的教學應著眼于學生對解決問題方法的感悟,這樣才可獲得最佳的效果。
的倍數(shù)的特征教學反思篇九
《3的倍數(shù)的特征》是五年級下冊數(shù)學第二單元“因數(shù)與倍數(shù)”中的一個知識點,是在學生已經(jīng)認識倍數(shù)和因數(shù)、2和5倍數(shù)的特征的基礎(chǔ)上進行教學的。由于2、5的倍數(shù)的特征從數(shù)的表面的特點就可以很容易看出——根據(jù)個位數(shù)的特點就可以判斷出來。但是3的倍數(shù)的特征卻不能只從個位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學生理解起來有一定的困難。
因而在《3的倍數(shù)的特征》的開始,我先復習了2、5的倍數(shù)的特征,然后學生猜一猜什么樣的數(shù)是3的倍數(shù),學生自然而然地會將“2.5的倍數(shù)的特征”遷移到“3的倍數(shù)特征的問題中,得出:個位上是3、6、9的數(shù)是3的倍數(shù),后被學生補充到“個位上是0—9的任何一個數(shù)字都有可能是3的倍數(shù),”其特征不明顯,也就是說3的倍數(shù)和一個數(shù)的個位數(shù)沒有關(guān)系,因此要從另外的角度來觀察和思考。在問題情境中讓學生產(chǎn)生認知沖突產(chǎn)生疑問,激發(fā)強烈的探究欲望。接著提供給每位學生一張百數(shù)表,讓他們?nèi)Τ鏊?的倍數(shù),拋出問題:把3的倍數(shù)的各位上的數(shù)相加,看看你有什么發(fā)現(xiàn),引導學生換角度思考3的倍數(shù)特征。接下來,經(jīng)過進一步提示,引導學生觀察各位上數(shù)的和,發(fā)現(xiàn)各位上的和是3的倍數(shù)。于是,形成新的猜想:一個數(shù)如果是3的倍數(shù),那么它各位上數(shù)的和也是3的倍數(shù)。
為了驗證這一猜想,我補充了一些其他的數(shù),如49×3=147,166×3=498等,使學生進一步確認這一結(jié)論的正確性。還可以任意寫一個數(shù),利用這一結(jié)論來驗證,如3697,3+6+9+7=25,25不是3的倍數(shù),而3697÷3也不能得到整數(shù)商,因此,它不是3的倍數(shù)。通過這樣的方式也使學生認識到:找出某個規(guī)律后,還要找出一些正面的、反面的例子進行檢驗,看是不是普遍適用。
為了使學生更好地掌握3的倍數(shù)的特征,進行課堂練習時,我還把一些數(shù)各個數(shù)位上的數(shù)經(jīng)過不同的排列,再讓學生判斷,以加深對“各位上數(shù)的和是3的倍數(shù)”的理解。如完成“做一做”第1題時,學生判斷完45是3的倍數(shù)后,教師可以再讓學生判斷一下54是不是3的倍數(shù)。
利用2、5、3的倍數(shù)的特征來判斷一個數(shù)是不是2、5或3的倍數(shù),其方法是比較容易掌握的,但要形成較好的數(shù)感,達到熟練判斷的程度,也不是一、兩節(jié)課所能解決的,還需要進行較多的練習進行鞏固。
這節(jié)課結(jié)束后,我感到自主學習和合作探究是這節(jié)課中最重要的兩種學習方式,學生通過自主選擇研究內(nèi)容,舉例驗證等獨立思考和小組討論,相互質(zhì)疑等合作探究活動,獲得了數(shù)學知識。學生的學習能動性和潛在能力得到了激發(fā)。在自主探索的過程中,學生體驗到了學習成功的愉悅,同時也促進了自身的發(fā)展。但最大的缺憾之處,最后總結(jié)3的倍數(shù)特征時,應放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。而練習題方面,也應形式面多樣化。
的倍數(shù)的特征教學反思篇十
3的倍數(shù)的特征比較隱蔽,學生一般想不到從“各位上數(shù)的和”去研究,本課注重引導學生經(jīng)歷探索的過程。上課開始先讓學生回顧舊知,2的倍數(shù)和5的倍數(shù)有什么特征,學生們發(fā)現(xiàn)都只要看一個數(shù)個位上的數(shù)就行了,于是很順地設(shè)下了陷阱:同學們,那猜猜看3的倍數(shù)有什么特征呢?猜測是一種常用的數(shù)學思考方法,讓學生猜測3的倍數(shù)有什么特征,能較好地調(diào)動學生的學習積極性。由于受2的倍數(shù)和5的倍數(shù)的特征的影響,有學生很自然猜測到:“個位上是0,3,6,9的數(shù)一定是3的倍數(shù)”,還有學生猜測:“各位上的數(shù)字加起來是3,6,9一定是3的倍數(shù)”,能想到這點應該說是了不起的。本課到這里都很順利,因為完全在我的預設(shè)之中。
下面進入驗證環(huán)節(jié),先學生判斷自己的學號是不是3的倍數(shù),再在這些學號中挑出個位上是0,3,6,9的數(shù),通過交流這些數(shù)不一定都是3的倍數(shù)。學生初步發(fā)現(xiàn)了3的倍數(shù)的特征與2和5的倍數(shù)不同,不表現(xiàn)在數(shù)的個位上,那3的倍數(shù)究竟與什么有關(guān)系呢。于是進入到動手操作環(huán)節(jié),在此基礎(chǔ)上,利用計數(shù)器轉(zhuǎn)移探索的方向,讓學生用3顆算珠在計數(shù)器上任意擺數(shù),得出結(jié)果:擺出的數(shù)都是3的倍數(shù),到這里有幾個學生顯得很興奮。隨后用5顆算珠實驗,發(fā)現(xiàn)擺出的數(shù)都不是3的倍數(shù),到這里學生中已經(jīng)有一些議論,他們都有了發(fā)現(xiàn)。為了讓更多的學生看出其中的神奇,我將自主權(quán)交給了學生們,自己選擇算珠的顆數(shù)進行了第三次實驗,然后板書出每組的實驗結(jié)果,從結(jié)果的數(shù)據(jù)中,學生們都很興奮地發(fā)現(xiàn)了所用算珠的顆數(shù)是3顆,6顆,9顆,撥出的數(shù)都是3的倍數(shù),每個數(shù)所用算珠的顆數(shù),也是每個數(shù)各位上數(shù)的和。把算珠顆數(shù)抽象成各位上數(shù)的和,是理解3的倍數(shù)特征的關(guān)鍵。
“試一試”是教學的第三步,如果一個數(shù)不是3的倍數(shù),那么這個數(shù)各位數(shù)的和不是3的倍數(shù)。利用反例進一步證實3的倍數(shù)的特征,體現(xiàn)了數(shù)學的嚴謹性和數(shù)學結(jié)論的確定性??上г谶@一點上,我很倉促地指著黑板上算珠顆數(shù)是4顆,5顆,7顆,8顆時,所擺出的數(shù)都不是3的倍數(shù),直接告訴了學生,而沒有讓學生自己舉出反例。隨后設(shè)計了一系列習題,使學生得到鞏固提高。
整節(jié)課只能說順利地走了下來,對于教者我來說從中發(fā)現(xiàn)了自己教學上的不足之處,在今后的教學中,我將不斷學習,及時總結(jié),虛心請教,以進一步提高自己的教學業(yè)務(wù)水平。
3的身為一名到崗不久的老師,課堂教學是重要的工作之一,在寫教學反思的時候可以反思自己的教學失誤,那么什么樣的教學反思才是好的呢?以下是小編收集整理的3的......
的倍數(shù)的特征教學反思篇十一
“能被3整除數(shù)的數(shù)”一課,能體現(xiàn)新的教育理念、教育思想。仔細分析,有以下幾個特點:
本節(jié)課不僅重視學生掌握能被3整除數(shù)的特征,并能運用特征進行正確判斷,同時十分重視學生學習過程的體驗和方法的滲透,讓學生通過“猜測——驗證——提出新的假設(shè)——驗證”的探索過程來發(fā)現(xiàn)知識,獲得結(jié)論,并感悟方法。
教科書只是提供了學生學習活動的基本線索。教學中,教師要充分發(fā)揮主觀能動性,創(chuàng)造性的使用教科書,本節(jié)課重新設(shè)計例題,通過用“0——9”十個數(shù)字組成能被整除的三位數(shù)讓學生探索特征,這樣處理使教學內(nèi)容有較強的靈活性,促進了學生思維的發(fā)展。教學內(nèi)容生活化不僅能激發(fā)學生興趣,產(chǎn)生親切感,而且使學生認識到現(xiàn)實生活中蘊藏著豐富的數(shù)學問題。開課時收集的數(shù)據(jù)一方面激發(fā)了學生學習的興趣,同時也縮短了教師和學生的距離,課后“你再長幾歲,這個歲數(shù)就能被3整除”這一開放題富有情趣,給學生留下了深刻的印象。
學習方式的轉(zhuǎn)變是本節(jié)課的主要特色。本節(jié)課始終以自主探索、合作交流為主要的學習方式,讓學生通過自主選教學內(nèi)容,舉例驗證等獨立思考和小組討論等合作探究活動,獲得教學知識、感悟方法。如在課的第二階段,設(shè)計三個層次的教學活動,讓學生充分探索、討論、交流,使學生真正成為學習的主人。第一層通過學生猜測、舉例、選數(shù)字組數(shù),使學生產(chǎn)生兩次認知沖突;第二層通過交換三位數(shù)數(shù)字的位置,仍然沒能發(fā)現(xiàn)特征,產(chǎn)生第三次認知沖突;第三層次通過計算各位上的數(shù)的“和、差、積、商”使結(jié)論逐漸顯露。這一過程不僅培養(yǎng)了學生探究精神,磨練了意志,同時也使學生品嘗了成功的喜悅。
的倍數(shù)的特征教學反思篇十二
《3的倍數(shù)的特征》是學生在學習過2.5倍數(shù)特征之后的又一內(nèi)容,因為2.5的倍數(shù)的特征僅僅體現(xiàn)在個位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學生理解起來有一定的困難。我決定在這節(jié)課中突出學生的自主探索,使學生猜想——觀察——再觀察——動手試驗的過程中,概括歸納出了3的倍數(shù)特征。
找準備知識中沖紛激發(fā)探索,在第一環(huán)節(jié)中我先讓學生復習2.5的倍數(shù)特征并對一些數(shù)據(jù)做出了判斷而后我們“誰來猜測一下3的倍數(shù)特征”激發(fā)學生探究的愿望。由于學生剛剛復習了2.5倍數(shù)的特征,知道只要看一個數(shù)的個位,因此在學習3的倍數(shù)特征時,自然會把“看個位”這一方法遷移過來。但實際上,卻不是這樣,于是新舊知識間的矛盾沖突使學生產(chǎn)生了困惑,有了新舊知識的矛盾沖突,就能激發(fā)起學生探究的愿望,這樣不反有利于學生對新知識的掌握,有效的將新知識納入到原有的認知結(jié)構(gòu)中去,還有利于培養(yǎng)學生深入探究的`意識和能力。
找準知識之間的沖突并巧妙激發(fā)出來,這是一節(jié)課的出彩之處,剛開始我們先采用課本上百數(shù)表來研究,結(jié)果在一個班實踐后認為效果并不是很理想,由于數(shù)太多,讓學生觀察3的倍數(shù)的這些數(shù)時,并從中找出相同的地方,結(jié)果,很多同學找了與本節(jié)課毫無關(guān)系的東西,浪費了很多時間。在評課的時候,我們又討論是不是找一些數(shù)代表百數(shù)表,于是我設(shè)計了一個表格,讓學生用除法計算的方法找到3的倍數(shù)的特征,并觀察這些數(shù),這些數(shù)的個位分別從0到9都有,讓學生知道3的倍數(shù)的特征跟數(shù)的個位沒有關(guān)系,然后從中又把像45和54,75和57,123和321等特殊的數(shù)單獨展示出來,讓學生觀察從中找出規(guī)律。結(jié)果我又重新上了這節(jié)課,效果比上節(jié)課要好。
這節(jié)課結(jié)束后,我感覺最大的缺憾之處,最后總結(jié)3的倍數(shù)特征時,應放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。而練習題方面,也應形式面多樣化,如用卡片練習判斷,或通過打手勢的方法或先聽老師——這樣效率更高,課堂氛圍好,課堂不是同步,學生的發(fā)展始終是教學的落腳點。我們的教學應著眼于學生對解決問題方法的感悟,這樣才可獲得最佳的效果。
的倍數(shù)的特征教學反思篇十三
《3的倍數(shù)特征》進行了兩次教學授課,第一次是新授,第二次是錄課重復授課。下面就本節(jié)課前后兩次上課進行如下反思:第一次上課,采用游戲的方式引入,提前給學生編號,根據(jù)編號做游戲。由于每個學生的編號不一樣,所以在做游戲的時候,每個學生集中注意力,傾聽游戲要求,激發(fā)了學生的學習興趣。設(shè)置游戲的目的是復習2或5倍數(shù)的特征,同時,對3的倍數(shù)特征的學習產(chǎn)生求知欲。接下來是采用提出猜想,舉出個例否定猜想來過渡。讓學生充分地認識到依據(jù)2或5的倍數(shù)特征的思想已經(jīng)行不通了,從而開始新的探索。在探索過程中借助“百數(shù)表”,讓學生獨立地圈出3的倍數(shù),圈完后互相交流3的倍數(shù)的個位有什么特點,再次否定了之前的思維定式。由于個位上沒有特點,所以引導學生從其他的角度觀察,學生能想到橫著觀察、豎著觀察,但對于斜著觀察不能很好的發(fā)現(xiàn),所以本節(jié)課中我關(guān)注到學生的思考困境,引導學生從斜著觀察的角度思考探索。當學生斜著觀察時能發(fā)現(xiàn)個位上的數(shù)字依次減1,十位上的數(shù)字依次加1,適時提出“什么是沒有變的?”問題一提出,學生恍然大悟,發(fā)現(xiàn):個位和十位上的數(shù)的和沒有變!順其自然的知道了3的倍數(shù)具有這樣規(guī)律。經(jīng)過研究每一斜行發(fā)現(xiàn):個位和十位上的數(shù)的和不變,都是3的倍數(shù)。知道了這個規(guī)律后,下面開始延伸這個規(guī)律。一方面:驗證百數(shù)表內(nèi)其他不是3的倍數(shù)是否具有這個規(guī)律?另一方面:比100大的數(shù),三位數(shù)、四位數(shù)、五位數(shù)等是否具有這個規(guī)律?通過兩方面的驗證,再次強調(diào)了這個規(guī)律是普遍存在的,而這時3的倍數(shù)特征已經(jīng)歸結(jié)為:一個數(shù)各位上的數(shù)的和是3的倍數(shù),這個數(shù)就是3的倍數(shù)。知道了3的倍數(shù)特征之后通過練習鞏固加強,練習的設(shè)計是三道題,這三道題設(shè)計為不同的層次,第一題是基礎(chǔ)題,第二題是拔高題,第三題是解決問題。通過做題發(fā)現(xiàn)學生本節(jié)課掌握得不錯。最后,對本節(jié)課的知識進行了延伸,通過出示課本第13頁“你知道嗎?”,讓學生明白為什么2或5的倍數(shù)特征只看個位就可以了,而3的倍數(shù)特征需要看所有數(shù)位。從而達到學知識不但要知其然還要知其所以然。整個教學過程中,學生能在猜想、操作、驗證、交流、歸納的數(shù)學活動中獲得豐富的數(shù)學經(jīng)驗,同時這也有利于學生創(chuàng)造力的培養(yǎng)。通過本節(jié)課的教學以及學生的掌握情況,最終檢測本節(jié)課的目標較好的達成。但反思這節(jié)課的不足,我覺得在每個環(huán)節(jié)上的過渡應該更加的自然。另外,在小組討論的時候應多關(guān)注學生的交流,對學生進行適時地指導?;诘谝还?jié)課的優(yōu)點和不足,進行了第二次的授課即錄課。由于學生們已經(jīng)學習了過本節(jié)課,所以對于學生們來說已經(jīng)是舊知識。要把舊知識重新來講,如果照搬之前的授課方式已經(jīng)遠遠不夠了。如何更改,這給我提出來一個新的問題。為此,這節(jié)課我做了適當?shù)恼{(diào)整。本節(jié)課我更多關(guān)注的是數(shù)學方法和思維方式的培養(yǎng)。其中體現(xiàn)在:
1、學生在舉例驗證猜想的時候,讓學生體會反例的作用,如果有一個反例的存在,就說明猜想的結(jié)論是錯誤的。
2、在探索3的倍數(shù)特征時,對于100以內(nèi)3的倍數(shù),應如何著手驗證,怎么選取數(shù)來驗證,這一環(huán)節(jié)讓學生體會:在研究規(guī)律的時候,優(yōu)先選擇數(shù)比較多的這一組,讓學生明白如果有規(guī)律更容易探索和發(fā)現(xiàn)。
3、在拓展規(guī)律的時候,采用舉了大量的數(shù)據(jù),證明了規(guī)律的普遍存在,讓學生體會規(guī)律的適用范圍。
4、在做練習的時候,第2小題,關(guān)注學生思考問題是否全面,關(guān)注學生的思考過程。
5、練習的第3小題,一道解決問題的題目,通過讓學生讀題、審題、分析題之后,再思考。這一道題學生展示了多種的做題方法,體現(xiàn)了方法的多樣性,同時也說明學生的思維是活躍的。本節(jié)課中的不足,練習中第3題學生的做法沒有完全的在黑板上板書,另外,本節(jié)課中學生會超前說出所有問題的答案,使得教師略顯失措,我覺得這是因為我備學生還不夠。在今后的教學中,我會改進自己的不足。我將更深入地研究教材、鉆研教法,不斷提高自己的教學水平,設(shè)計出學生更能接受和喜歡的課。
的倍數(shù)的特征教學反思篇十四
《3的倍數(shù)的特征》是學生在學習過2.5倍數(shù)特征之后的又一內(nèi)容,因為2.5的倍數(shù)的特征僅僅體現(xiàn)在個位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學生理解起來有一定的困難。我決定在這節(jié)課中突出學生的自主探索,使學生猜想——觀察——再觀察——動手試驗的過程中,概括歸納出了3的倍數(shù)特征。
1、找準知識沖突激發(fā)探索愿望。
找準備知識中沖紛激發(fā)探索,在第一環(huán)節(jié)中我先讓學生復習2.5的倍數(shù)特征并對一些數(shù)據(jù)做出了判斷而后我們“誰來猜測一下3的倍數(shù)特征”激發(fā)學生探究的愿望。由于學生剛剛復習了2.5倍數(shù)的特征,知道只要看一個數(shù)的個位,因此在學習3的倍數(shù)特征時,自然會把“看個位”這一方法遷移過來。但實際上,卻不是這樣,于是新舊知識間的矛盾沖突使學生產(chǎn)生了困惑,有了新舊知識的矛盾沖突,就能激發(fā)起學生探究的愿望,這樣不反有利于學生對新知識的掌握,有效的將新知識納入到原有的認知結(jié)構(gòu)中去,還有利于培養(yǎng)學生深入探究的意識和能力。
2、激發(fā)學習中的困惑,讓探究走向深入。
找準知識之間的沖突并巧妙激發(fā)出來,這是一節(jié)課的出彩之處,剛開始我們先采用課本上百數(shù)表來研究,結(jié)果在一個班實踐后認為效果并不是很理想,由于數(shù)太多,讓學生觀察3的倍數(shù)的這些數(shù)時,并從中找出相同的地方,結(jié)果,很多同學找了與本節(jié)課毫無關(guān)系的東西,浪費了很多時間。在評課的時候,我們又討論是不是找一些數(shù)代表百數(shù)表,于是我設(shè)計了一個表格,讓學生用除法計算的方法找到3的倍數(shù)的特征,并觀察這些數(shù),這些數(shù)的個位分別從0到9都有,讓學生知道3的`倍數(shù)的特征跟數(shù)的個位沒有關(guān)系,然后從中又把像45和54,75和57,123和321等特殊的數(shù)單獨展示出來,讓學生觀察從中找出規(guī)律。結(jié)果我又重新上了這節(jié)課,效果比上節(jié)課要好。
《3的倍數(shù)的特征》是學生在學習過2.5倍數(shù)特征之后的又一內(nèi)容,因為2.5的倍數(shù)的特征僅僅體現(xiàn)在個位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學生理解起來有一定的困難。我決定在這節(jié)課中突出學生的自主探索,使學生猜想——觀察——再觀察——動手試驗的過程中,概括歸納出了3的倍數(shù)特征。
找準知識沖突激發(fā)探索愿望。
找準備知識中沖紛激發(fā)探索,在第一環(huán)節(jié)中我先讓學生復習2.5的倍數(shù)特征并對一些數(shù)據(jù)做出了判斷而后我們“誰來猜測一下3的倍數(shù)特征”激發(fā)學生探究的愿望。由于學生剛剛復習了2.5倍數(shù)的特征,知道只要看一個數(shù)的個位,因此在學習3的倍數(shù)特征時,自然會把“看個位”這一方法遷移過來。但實際上,卻不是這樣,于是新舊知識間的矛盾沖突使學生產(chǎn)生了困惑,有了新舊知識的矛盾沖突,就能激發(fā)起學生探究的愿望,這樣不反有利于學生對新知識的掌握,有效的將新知識納入到原有的認知結(jié)構(gòu)中去,還有利于培養(yǎng)學生深入探究的意識和能力。
的倍數(shù)的特征教學反思篇十五
《3的倍數(shù)的特征》是學生在學習過2.5倍數(shù)特征之后的又一內(nèi)容,因為2.5的倍數(shù)的特征僅僅體現(xiàn)在個位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學生理解起來有一定的困難。我決定在這節(jié)課中突出學生的自主探索,使學生猜想——觀察——再觀察——動手試驗的過程中,概括歸納出了3的倍數(shù)特征。
找準備知識中沖紛激發(fā)探索,在第一環(huán)節(jié)中我先讓學生復習2.5的倍數(shù)特征并對一些數(shù)據(jù)做出了判斷而后我們“誰來猜測一下3的倍數(shù)特征”激發(fā)學生探究的愿望。由于學生剛剛復習了2.5倍數(shù)的特征,知道只要看一個數(shù)的個位,因此在學習3的倍數(shù)特征時,自然會把“看個位”這一方法遷移過來。但實際上,卻不是這樣,于是新舊知識間的矛盾沖突使學生產(chǎn)生了困惑,有了新舊知識的矛盾沖突,就能激發(fā)起學生探究的愿望,這樣不反有利于學生對新知識的掌握,有效的將新知識納入到原有的認知結(jié)構(gòu)中去,還有利于培養(yǎng)學生深入探究的意識和能力。
找準知識之間的沖突并巧妙激發(fā)出來,這是一節(jié)課的出彩之處,剛開始我們先采用課本上百數(shù)表來研究,結(jié)果在一個班實踐后認為效果并不是很理想,由于數(shù)太多,讓學生觀察3的倍數(shù)的這些數(shù)時,并從中找出相同的地方,結(jié)果,很多同學找了與本節(jié)課毫無關(guān)系的東西,浪費了很多時間。在評課的時候,我們又討論是不是找一些數(shù)代表百數(shù)表,于是我設(shè)計了一個表格,讓學生用除法計算的方法找到3的倍數(shù)的特征,并觀察這些數(shù),這些數(shù)的個位分別從0到9都有,讓學生知道3的倍數(shù)的特征跟數(shù)的個位沒有關(guān)系,然后從中又把像45和54,75和57,123和321等特殊的數(shù)單獨展示出來,讓學生觀察從中找出規(guī)律。結(jié)果我又重新上了這節(jié)課,效果比上節(jié)課要好。