總結(jié)是把一定階段內(nèi)的有關(guān)情況分析研究,做出有指導(dǎo)性的經(jīng)驗(yàn)方法以及結(jié)論的書(shū)面材料,它可以使我們更有效率,不妨坐下來(lái)好好寫(xiě)寫(xiě)總結(jié)吧。什么樣的總結(jié)才是有效的呢?以下是小編精心整理的總結(jié)范文,供大家參考借鑒,希望可以幫助到有需要的朋友。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇一
(2)平行四邊形的鄰角互補(bǔ),對(duì)角相等;
(3)平行四邊形的對(duì)角線互相平分;
3.平行四邊形的判定
平行四邊形是幾何中一個(gè)重要內(nèi)容,如何根據(jù)平行四邊形的性質(zhì),判定一個(gè)四邊形是平行四邊形是個(gè)重點(diǎn),下面就對(duì)平行四邊形的五種判定方法,進(jìn)行劃分:
(1)兩組對(duì)邊分別平行的四邊形是平行四邊形;
(2)兩組對(duì)邊分別相等的四邊形是平行四邊形;
(3)一組對(duì)邊平行且相等的四邊形是平行四邊形;
(4)兩組對(duì)角分別相等的四邊形是平行四邊形;
(5)對(duì)角線互相平分的四邊形是平行四邊形
常見(jiàn)考法
(1)利用平行四邊形的性質(zhì),求角度、線段長(zhǎng)、周長(zhǎng);
(2)求平行四邊形某邊的取值范圍;
(3)考查一些綜合計(jì)算問(wèn)題;
(4)利用平行四邊形性質(zhì)證明角相等、線段相等和直線平行;
(5)利用判定定理證明四邊形是平行四邊形。
(1)平行四邊形的性質(zhì)較多,易把對(duì)角線互相平分,錯(cuò)記成對(duì)角線相等;
(2)“一組對(duì)邊平行且相等的四邊形是平行四邊形”錯(cuò)記成“一組對(duì)邊平行,一組對(duì)邊相等的四邊形是平行四邊形”后者不是平行四邊形的判定定理,它只是個(gè)等腰梯形。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇二
“靜態(tài)”概念:有公共端點(diǎn)的兩條射線組成的圖形叫做角。
“動(dòng)態(tài)”概念:角可以看作是一條射線繞其端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形。
如果一個(gè)角的兩邊成一條直線,那么這個(gè)角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做鈍角;大于0小于直角的角叫做銳角。
二、角的換算:1周角=2平角=4直角=360°;。
1平角=2直角=180°;。
1直角=90°;。
1度=60分=3600秒(即:1°=60′=3600″);。
1分=60秒(即:1′=60″).
三、余角、補(bǔ)角的概念和性質(zhì):
概念:如果兩個(gè)角的和是一個(gè)平角,那么這兩個(gè)角叫做互為補(bǔ)角。
如果兩個(gè)角的和是一個(gè)直角,那么這兩個(gè)角叫做互為余角。
說(shuō)明:互補(bǔ)、互余是指兩個(gè)角的數(shù)量關(guān)系,沒(méi)有位置關(guān)系。
性質(zhì):同角(或等角)的余角相等;。
同角(或等角)的補(bǔ)角相等。
四、角的比較方法:
角的大小比較,有兩種方法:
(1)度量法(利用量角器);。
(2)疊合法(利用圓規(guī)和直尺)。
五、角平分線:從一個(gè)角的頂點(diǎn)引出的一條射線。把這個(gè)角分成相等的兩部分,這條射線叫做這個(gè)角的平分線。
常見(jiàn)考法。
(1)考查與時(shí)鐘有關(guān)的問(wèn)題;(2)角的計(jì)算與度量。
誤區(qū)提醒。
角的度、分、秒單位的換算是60進(jìn)制,而不是10進(jìn)制,換算時(shí)易受10進(jìn)制影響而出錯(cuò)。
【典型例題】(20xx云南曲靖)從3時(shí)到6時(shí),鐘表的時(shí)針旋轉(zhuǎn)角的度數(shù)是()。
【答案】3時(shí)到6時(shí),時(shí)針旋轉(zhuǎn)的是一個(gè)周角的1/4,故是90度,本題選c.
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇三
初中數(shù)學(xué)教學(xué),注重培養(yǎng)學(xué)生正確的數(shù)學(xué)情操和幾何思維能力。初中怎樣學(xué)好數(shù)學(xué)?下面給大家介紹初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納,趕緊來(lái)看看吧!
有理數(shù)的加法運(yùn)算。
同號(hào)兩數(shù)來(lái)相加,絕對(duì)值加不變號(hào)。
異號(hào)相加大減小,大數(shù)決定和符號(hào)。
互為相反數(shù)求和,結(jié)果是零須記好。
【注】“大”減“小”是指絕對(duì)值的大小。
有理數(shù)的減法運(yùn)算。
減正等于加負(fù),減負(fù)等于加正。
有理數(shù)的乘法運(yùn)算符號(hào)法則。
同號(hào)得正異號(hào)負(fù),一項(xiàng)為零積是零。
合并同類(lèi)項(xiàng)。
說(shuō)起合并同類(lèi)項(xiàng),法則千萬(wàn)不能忘。
只求系數(shù)代數(shù)和,字母指數(shù)留原樣。
去、添括號(hào)法則。
去括號(hào)或添括號(hào),關(guān)鍵要看連接號(hào)。
擴(kuò)號(hào)前面是正號(hào),去添括號(hào)不變號(hào)。
括號(hào)前面是負(fù)號(hào),去添括號(hào)都變號(hào)。
解方程。
已知未知鬧分離,分離要靠移完成。
移加變減減變加,移乘變除除變乘。
平方差公式。
兩數(shù)和乘兩數(shù)差,等于兩數(shù)平方差。
積化和差變兩項(xiàng),完全平方不是它。
完全平方公式。
二數(shù)和或差平方,展開(kāi)式它共三項(xiàng)。
首平方與末平方,首末二倍中間放。
和的平方加聯(lián)結(jié),先減后加差平方。
完全平方公式。
首平方又末平方,二倍首末在中央。
和的平方加再加,先減后加差平方。
解一元一次方程。
先去分母再括號(hào),移項(xiàng)變號(hào)要記牢。
同類(lèi)各項(xiàng)去合并,系數(shù)化“1”還沒(méi)好。
求得未知須檢驗(yàn),回代值等才算了。
解一元一次方程。
先去分母再括號(hào),移項(xiàng)合并同類(lèi)項(xiàng)。
系數(shù)化1還沒(méi)好,準(zhǔn)確無(wú)誤不白忙。
因式分解與乘法。
和差化積是乘法,乘法本身是運(yùn)算。
積化和差是分解,因式分解非運(yùn)算。
因式分解。
兩式平方符號(hào)異,因式分解你別怕。
兩底和乘兩底差,分解結(jié)果就是它。
兩式平方符號(hào)同,底積2倍坐中央。
因式分解能與否,符號(hào)上面有文章。
同和異差先平方,還要加上正負(fù)號(hào)。
同正則正負(fù)就負(fù),異則需添冪符號(hào)。
因式分解。
一提二套三分組,十字相乘也上數(shù)。
四種方法都不行,拆項(xiàng)添項(xiàng)去重組。
重組無(wú)望試求根,換元或者算余數(shù)。
多種方法靈活選,連乘結(jié)果是基礎(chǔ)。
同式相乘若出現(xiàn),乘方表示要記住。
【注】一提(提公因式)二套(套公式)。
因式分解。
一提二套三分組,叉乘求根也上數(shù)。
五種方法都不行,拆項(xiàng)添項(xiàng)去重組。
對(duì)癥下藥穩(wěn)又準(zhǔn),連乘結(jié)果是基礎(chǔ)。
二次三項(xiàng)式的因式分解。
先想完全平方式,十字相乘是其次。
兩種方法行不通,求根分解去嘗試。
比和比例。
兩數(shù)相除也叫比,兩比相等叫比例。
外項(xiàng)積等內(nèi)項(xiàng)積,等積可化八比例。
分別交換內(nèi)外項(xiàng),統(tǒng)統(tǒng)都要叫更比。
同時(shí)交換內(nèi)外項(xiàng),便要稱(chēng)其為反比。
前后項(xiàng)和比后項(xiàng),比值不變叫合比。
前后項(xiàng)差比后項(xiàng),組成比例是分比。
兩項(xiàng)和比兩項(xiàng)差,比值相等合分比。
前項(xiàng)和比后項(xiàng)和,比值不變叫等比。
解比例。
外項(xiàng)積等內(nèi)項(xiàng)積,列出方程并解之。
求比值。
由已知去求比值,多種途徑可利用。
活用比例七性質(zhì),變量替換也走紅。
消元也是好辦法,殊途同歸會(huì)變通。
正比例與反比例。
商定變量成正比,積定變量成反比。
正比例與反比例。
變化過(guò)程商一定,兩個(gè)變量成正比。
變化過(guò)程積一定,兩個(gè)變量成反比。
判斷四數(shù)成比例。
四數(shù)是否成比例,遞增遞減先排序。
兩端積等中間積,四數(shù)一定成比例。
判斷四式成比例。
四式是否成比例,生或降冪先排序。
兩端積等中間積,四式便可成比例。
比例中項(xiàng)。
成比例的四項(xiàng)中,外項(xiàng)相同會(huì)遇到。
有時(shí)內(nèi)項(xiàng)會(huì)相同,比例中項(xiàng)少不了。
比例中項(xiàng)很重要,多種場(chǎng)合會(huì)碰到。
成比例的四項(xiàng)中,外項(xiàng)相同有不少。
有時(shí)內(nèi)項(xiàng)會(huì)相同,比例中項(xiàng)出現(xiàn)了。
同數(shù)平方等異積,比例中項(xiàng)無(wú)處逃。
根式與無(wú)理式。
表示方根代數(shù)式,都可稱(chēng)其為根式。
根式異于無(wú)理式,被開(kāi)方式無(wú)限制。
被開(kāi)方式有字母,才能稱(chēng)為無(wú)理式。
無(wú)理式都是根式,區(qū)分它們有標(biāo)志。
被開(kāi)方式有字母,又可稱(chēng)為無(wú)理式。
求定義域。
求定義域有講究,四項(xiàng)原則須留意。
負(fù)數(shù)不能開(kāi)平方,分母為零無(wú)意義。
指是分?jǐn)?shù)底正數(shù),數(shù)零沒(méi)有零次冪。
限制條件不唯一,滿(mǎn)足多個(gè)不等式。
求定義域要過(guò)關(guān),四項(xiàng)原則須注意。
負(fù)數(shù)不能開(kāi)平方,分母為零無(wú)意義。
分?jǐn)?shù)指數(shù)底正數(shù),數(shù)零沒(méi)有零次冪。
限制條件不唯一,不等式組求解集。
解一元一次不等式。
先去分母再括號(hào),移項(xiàng)合并同類(lèi)項(xiàng)。
系數(shù)化“1”有講究,同乘除負(fù)要變向。
先去分母再括號(hào),移項(xiàng)別忘要變號(hào)。
同類(lèi)各項(xiàng)去合并,系數(shù)化“1”注意了。
同乘除正無(wú)防礙,同乘除負(fù)也變號(hào)。
解一元一次不等式組。
大于頭來(lái)小于尾,大小不一中間找。
大大小小沒(méi)有解,四種情況全來(lái)了。
同向取兩邊,異向取中間。
中間無(wú)元素,無(wú)解便出現(xiàn)。
幼兒園小鬼當(dāng)家,(同小相對(duì)取較小)。
敬老院以老為榮,(同大就要取較大)。
軍營(yíng)里沒(méi)老沒(méi)少。(大小小大就是它)。
大大小小解集空。(小小大大哪有哇)。
解一元二次不等式。
首先化成一般式,構(gòu)造函數(shù)第二站。
判別式值若非負(fù),曲線橫軸有交點(diǎn)。
a正開(kāi)口它向上,大于零則取兩邊。
代數(shù)式若小于零,解集交點(diǎn)數(shù)之間。
方程若無(wú)實(shí)數(shù)根,口上大零解為全。
小于零將沒(méi)有解,開(kāi)口向下正相反。
用平方差公式因式分解。
異號(hào)兩個(gè)平方項(xiàng),因式分解有辦法。
兩底和乘兩底差,分解結(jié)果就是它。
用完全平方公式因式分解。
兩平方項(xiàng)在兩端,底積2倍在中部。
同正兩底和平方,全負(fù)和方相反數(shù)。
分成兩底差平方,方正倍積要為負(fù)。
兩邊為負(fù)中間正,底差平方相反數(shù)。
一平方又一平方,底積2倍在中路。
三正兩底和平方,全負(fù)和方相反數(shù)。
分成兩底差平方,兩端為正倍積負(fù)。
兩邊若負(fù)中間正,底差平方相反數(shù)。
用公式法解一元二次方程。
要用公式解方程,首先化成一般式。
調(diào)整系數(shù)隨其后,使其成為最簡(jiǎn)比。
確定參數(shù)abc,計(jì)算方程判別式。
判別式值與零比,有無(wú)實(shí)根便得知。
有實(shí)根可套公式,沒(méi)有實(shí)根要告之。
用常規(guī)配方法解一元二次方程。
左未右已先分離,二系化“1”是其次。
一系折半再平方,兩邊同加沒(méi)問(wèn)題。
左邊分解右合并,直接開(kāi)方去解題。
該種解法叫配方,解方程時(shí)多練習(xí)。
用間接配方法解一元二次方程。
已知未知先分離,因式分解是其次。
調(diào)整系數(shù)等互反,和差積套恒等式。
完全平方等常數(shù),間接配方顯優(yōu)勢(shì)。
【注】恒等式。
解一元二次方程。
方程沒(méi)有一次項(xiàng),直接開(kāi)方最理想。
如果缺少常數(shù)項(xiàng),因式分解沒(méi)商量。
b、c相等都為零,等根是零不要忘。
b、c同時(shí)不為零,因式分解或配方,
也可直接套公式,因題而異擇良方。
正比例函數(shù)的鑒別。
判斷正比例函數(shù),檢驗(yàn)當(dāng)分兩步走。
一量表示另一量,有沒(méi)有。
若有再去看取值,全體實(shí)數(shù)都需要。
區(qū)分正比例函數(shù),衡量可分兩步走。
一量表示另一量,是與否。
若有還要看取值,全體實(shí)數(shù)都要有。
正比例函數(shù)的圖象與性質(zhì)。
正比函數(shù)圖直線,經(jīng)過(guò)和原點(diǎn)。
k正一三負(fù)二四,變化趨勢(shì)記心間。
k正左低右邊高,同大同小向爬山。
k負(fù)左高右邊低,一大另小下山巒。
一次函數(shù)。
一次函數(shù)圖直線,經(jīng)過(guò)點(diǎn)。
k正左低右邊高,越走越高向爬山。
k負(fù)左高右邊低,越來(lái)越低很明顯。
k稱(chēng)斜率b截距,截距為零變正函。
反比例函數(shù)。
反比函數(shù)雙曲線,經(jīng)過(guò)點(diǎn)。
k正一三負(fù)二四,兩軸是它漸近線。
k正左高右邊低,一三象限滑下山。
k負(fù)左低右邊高,二四象限如爬山。
二次函數(shù)。
二次方程零換y,二次函數(shù)便出現(xiàn)。
全體實(shí)數(shù)定義域,圖像叫做拋物線。
拋物線有對(duì)稱(chēng)軸,兩邊單調(diào)正相反。
a定開(kāi)口及大小,線軸交點(diǎn)叫頂點(diǎn)。
頂點(diǎn)非高即最低。上低下高很顯眼。
如果要畫(huà)拋物線,平移也可去描點(diǎn),
提取配方定頂點(diǎn),兩條途徑再挑選。
列表描點(diǎn)后連線,平移規(guī)律記心間。
左加右減括號(hào)內(nèi),號(hào)外上加下要減。
二次方程零換y,就得到二次函數(shù)。
圖像叫做拋物線,定義域全體實(shí)數(shù)。
a定開(kāi)口及大小,開(kāi)口向上是正數(shù)。
絕對(duì)值大開(kāi)口小,開(kāi)口向下a負(fù)數(shù)。
拋物線有對(duì)稱(chēng)軸,增減特性可看圖。
線軸交點(diǎn)叫頂點(diǎn),頂點(diǎn)縱標(biāo)最值出。
如果要畫(huà)拋物線,描點(diǎn)平移兩條路。
提取配方定頂點(diǎn),平移描點(diǎn)皆成圖。
列表描點(diǎn)后連線,三點(diǎn)大致定全圖。
若要平移也不難,先畫(huà)基礎(chǔ)拋物線,
頂點(diǎn)移到新位置,開(kāi)口大小隨基礎(chǔ)。
【注】基礎(chǔ)拋物線。
直線、射線與線段。
直線射線與線段,形狀相似有關(guān)聯(lián)。
直線長(zhǎng)短不確定,可向兩方無(wú)限延。
射線僅有一端點(diǎn),反向延長(zhǎng)成直線。
線段定長(zhǎng)兩端點(diǎn),雙向延伸變直線。
兩點(diǎn)定線是共性,組成圖形最常見(jiàn)。
角
一點(diǎn)出發(fā)兩射線,組成圖形叫做角。
共線反向是平角,平角之半叫直角。
平角兩倍成周角,小于直角叫銳角。
直平之間是鈍角,平周之間叫優(yōu)角。
互余兩角和直角,和是平角互補(bǔ)角。
一點(diǎn)出發(fā)兩射線,組成圖形叫做角。
平角反向且共線,平角之半叫直角。
平角兩倍成周角,小于直角叫銳角。
鈍角界于直平間,平周之間叫優(yōu)角。
和為直角叫互余,互為補(bǔ)角和平角。
證等積或比例線段。
等積或比例線段,多種途徑可以證。
證等積要改等比,對(duì)照?qǐng)D形看特征。
共點(diǎn)共線線相交,平行截比把題證。
三點(diǎn)定型十分像,想法來(lái)把相似證。
圖形明顯不相似,等線段比替換證。
換后結(jié)論能成立,原來(lái)命題即得證。
實(shí)在不行用面積,射影角分線也成。
只要學(xué)習(xí)肯登攀,手腦并用無(wú)不勝。
解無(wú)理方程。
一無(wú)一有各一邊,兩無(wú)也要放兩邊。
乘方根號(hào)無(wú)蹤跡,方程可解無(wú)負(fù)擔(dān)。
兩無(wú)一有相對(duì)難,兩次乘方也好辦。
特殊情況去換元,得解驗(yàn)根是必然。
解分式方程。
先約后乘公分母,整式方程轉(zhuǎn)化出。
特殊情況可換元,去掉分母是出路。
求得解后要驗(yàn)根,原留增舍別含糊。
列方程解應(yīng)用題。
列方程解應(yīng)用題,審設(shè)列解雙檢答。
審題弄清已未知,設(shè)元直間兩辦法。
列表畫(huà)圖造方程,解方程時(shí)守章法。
檢驗(yàn)準(zhǔn)且合題意,問(wèn)求同一才作答。
添加輔助線。
學(xué)習(xí)幾何體會(huì)深,成敗也許一線牽。
分散條件要集中,常要添加輔助線。
畏懼心理不要有,其次要把觀念變。
熟能生巧有規(guī)律,真知灼見(jiàn)靠實(shí)踐。
圖中已知有中線,倍長(zhǎng)中線把線連。
旋轉(zhuǎn)構(gòu)造全等形,等線段角可代換。
多條中線連中點(diǎn),便可得到中位線。
倘若知角平分線,既可兩邊作垂線。
也可沿線去翻折,全等圖形立呈現(xiàn)。
角分線若加垂線,等腰三角形可見(jiàn)。
角分線加平行線,等線段角位置變。
已知線段中垂線,連接兩端等線段。
輔助線必畫(huà)虛線,便與原圖聯(lián)系看。
兩點(diǎn)間距離公式。
同軸兩點(diǎn)求距離,大減小數(shù)就為之。
與軸等距兩個(gè)點(diǎn),間距求法亦如此。
平面任意兩個(gè)點(diǎn),橫縱標(biāo)差先求值。
差方相加開(kāi)平方,距離公式要牢記。
矩形的判定。
任意一個(gè)四邊形,三個(gè)直角成矩形;。
對(duì)角線等互平分,四邊形它是矩形。
已知平行四邊形,一個(gè)直角叫矩形;。
兩對(duì)角線若相等,理所當(dāng)然為矩形。
菱形的判定。
任意一個(gè)四邊形,四邊相等成菱形;。
四邊形的對(duì)角線,垂直互分是菱形。
已知平行四邊形,鄰邊相等叫菱形;。
兩對(duì)角線若垂直,順理成章為菱形。
概念課。
要重視教學(xué)過(guò)程,要積極體驗(yàn)知識(shí)產(chǎn)生、發(fā)展的過(guò)程,要把知識(shí)的來(lái)龍去脈搞清楚,認(rèn)識(shí)知識(shí)發(fā)生的過(guò)程,理解公式、定理、法則的推導(dǎo)過(guò)程,改變死記硬背的方法,這樣我們就能從知識(shí)形成、發(fā)展過(guò)程當(dāng)中,理解到學(xué)會(huì)它的樂(lè)趣;在解決問(wèn)題的過(guò)程中,體會(huì)到成功的喜悅。
習(xí)題課。
要掌握“聽(tīng)一遍不如看一遍,看一遍不如做一遍,做一遍不如講一遍,講一遍不如辯一辯”的訣竅。除了聽(tīng)老師講,看老師做以外,要自己多做習(xí)題,而且要把自己的體會(huì)主動(dòng)、大膽地講給大家聽(tīng),遇到問(wèn)題要和同學(xué)、老師辯一辯,堅(jiān)持真理,改正錯(cuò)誤。在聽(tīng)課時(shí)要注意老師展示的解題思維過(guò)程,要多思考、多探究、多嘗試,發(fā)現(xiàn)創(chuàng)造性的證法及解法,學(xué)會(huì)“小題大做”和“大題小做”的解題方法,即對(duì)選擇題、填空題一類(lèi)的客觀題要認(rèn)真對(duì)待絕不粗心大意,就像對(duì)待大題目一樣,做到下筆如有神;對(duì)綜合題這樣的大題目不妨把“大”拆“小”,以“退”為“進(jìn)”,也就是把一個(gè)比較復(fù)雜的問(wèn)題,拆成或退為最簡(jiǎn)單、最原始的問(wèn)題,把這些小題、簡(jiǎn)單問(wèn)題想通、想透,找出規(guī)律,然后再來(lái)一個(gè)飛躍,進(jìn)一步升華,就能湊成一個(gè)大題,即退中求進(jìn)了。如果有了這種分解、綜合的能力,加上有扎實(shí)的基本功還有什么題目難得倒我們。
復(fù)習(xí)課。
在數(shù)學(xué)學(xué)習(xí)過(guò)程中,要有一個(gè)清醒的復(fù)習(xí)意識(shí),逐漸養(yǎng)成良好的復(fù)習(xí)習(xí)慣,從而逐步學(xué)會(huì)學(xué)習(xí)。數(shù)學(xué)復(fù)習(xí)應(yīng)是一個(gè)反思性學(xué)習(xí)過(guò)程。要反思對(duì)所學(xué)習(xí)的知識(shí)、技能有沒(méi)有達(dá)到課程所要求的程度;要反思學(xué)習(xí)中涉及到了哪些數(shù)學(xué)思想方法,這些數(shù)學(xué)思想方法是如何運(yùn)用的,運(yùn)用過(guò)程中有什么特點(diǎn);要反思基本問(wèn)題(包括基本圖形、圖像等),典型問(wèn)題有沒(méi)有真正弄懂弄通了,平時(shí)碰到的問(wèn)題中有哪些問(wèn)題可歸結(jié)為這些基本問(wèn)題;要反思自己的錯(cuò)誤,找出產(chǎn)生錯(cuò)誤的原因,訂出改正的措施。在新學(xué)期大家準(zhǔn)備一本數(shù)學(xué)學(xué)習(xí)“病例卡”,把平時(shí)犯的錯(cuò)誤記下來(lái),找出“病因”開(kāi)出“處方”,并且經(jīng)常拿出來(lái)看看、想想錯(cuò)在哪里,為什么會(huì)錯(cuò),怎么改正,通過(guò)你的努力,到中考時(shí)你的數(shù)學(xué)就沒(méi)有什么“病例”了。并且數(shù)學(xué)復(fù)習(xí)應(yīng)在數(shù)學(xué)知識(shí)的運(yùn)用過(guò)程中進(jìn)行,通過(guò)運(yùn)用,達(dá)到深化理解、發(fā)展能力的目的,因此在新的一年要在教師的指導(dǎo)下做一定數(shù)量的數(shù)學(xué)習(xí)題,做到舉一反三、熟練應(yīng)用,避免以“練”代“復(fù)”的題海戰(zhàn)術(shù)。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇四
1.自變量的取值范圍:
分式分母不為零,偶次根下負(fù)不行;。
零次冪底數(shù)不為零,整式、奇次根全能行.
2.函數(shù)圖象的移動(dòng)規(guī)律:
若把一次函數(shù)的解析式寫(xiě)成y=k(x+0)+b,
二次函數(shù)的解析式寫(xiě)成y=a(x+h)2+k的形式,
則可用下面的口訣。
“左右平移在括號(hào),上下平移在末稍,左正右負(fù)須牢記,上正下負(fù)錯(cuò)不了”.
一次函數(shù)是直線,圖象經(jīng)過(guò)三象限;。
正比例函數(shù)更簡(jiǎn)單,經(jīng)過(guò)原點(diǎn)一直線;。
兩個(gè)系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與y軸來(lái)相見(jiàn),
k為正來(lái)右上斜,x增減y增減;。
k為負(fù)來(lái)左下展,變化規(guī)律正相反;。
k的絕對(duì)值越大,線離橫軸就越遠(yuǎn).
4.二次函數(shù)的圖象與性質(zhì)的口訣:
二次函數(shù)拋物線,圖象對(duì)稱(chēng)是關(guān)鍵;。
開(kāi)口、頂點(diǎn)和交點(diǎn),它們確定圖象現(xiàn);。
開(kāi)口、大小由a斷,c與y軸來(lái)相見(jiàn);。
b的符號(hào)較特別,符號(hào)與a相關(guān)聯(lián);。
頂點(diǎn)位置先找見(jiàn),y軸作為參考線;。
左同右異中為0,牢記心中莫混亂;。
頂點(diǎn)坐標(biāo)最重要,一般式配方它就現(xiàn);。
橫標(biāo)即為對(duì)稱(chēng)軸,縱標(biāo)函數(shù)最值見(jiàn).
若求對(duì)稱(chēng)軸位置,符號(hào)反,一般、頂點(diǎn)、交點(diǎn)式,不同表達(dá)能互換.
5.反比例函數(shù)的圖象與性質(zhì)的口訣:
反比例函數(shù)有特點(diǎn),雙曲線相背離得遠(yuǎn);。
k為正,圖在一、三(象)限,k為負(fù),圖在二、四(象)限;。
圖在一、三函數(shù)減,兩個(gè)分支分別減.
圖在二、四正相反,兩個(gè)分支分別增;。
線越長(zhǎng)越近軸,永遠(yuǎn)與軸不沾邊.
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇五
建立了平面直角坐標(biāo)系后,對(duì)于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過(guò)來(lái),對(duì)于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。
對(duì)于平面內(nèi)任意一點(diǎn)c,過(guò)點(diǎn)c分別向x軸、y軸作垂線,垂足在x軸、y軸上的對(duì)應(yīng)點(diǎn)a,b分別叫做點(diǎn)c的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(duì)(a,b)叫做點(diǎn)c的坐標(biāo)。
一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。
希望上面對(duì)點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會(huì)在考試中取得優(yōu)異成績(jī)的。
關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識(shí)講解。
因式分解的一般步驟。
通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒(méi)有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。
相信上面對(duì)因式分解的一般步驟知識(shí)的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì)考出好成績(jī)。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇六
1、兩組對(duì)邊平行的四邊形是平行四邊形。
2、性質(zhì):
(1)平行四邊形的對(duì)邊相等且平行
(2)平行四邊形的對(duì)角相等,鄰角互補(bǔ)
(3)平行四邊形的對(duì)角線互相平分
3、判定:
(1)兩組對(duì)邊分別平行的四邊形是平行四邊形
(2)兩組對(duì)邊分別相等的四邊形是平行四邊形
(3)一組對(duì)邊平行且相等的四邊形是平行四邊形
(4)兩組對(duì)角分別相等的四邊形是平行四邊形
(5)對(duì)角線互相平分的四邊形是平行四邊形
4、對(duì)稱(chēng)性:平行四邊形是中心對(duì)稱(chēng)圖形
二、矩形的定義、性質(zhì)及判定
1、定義:有一個(gè)角是直角的平行四邊形叫做矩形
2、性質(zhì):矩形的四個(gè)角都是直角,矩形的對(duì)角線相等
3、判定:
(1)有一個(gè)角是直角的平行四邊形叫做矩形
(2)有三個(gè)角是直角的四邊形是矩形
(3)兩條對(duì)角線相等的平行四邊形是矩形
4、對(duì)稱(chēng)性:矩形是軸對(duì)稱(chēng)圖形也是中心對(duì)稱(chēng)圖形。
三、菱形的定義、性質(zhì)及判定
1、定義:有一組鄰邊相等的平行四邊形叫做菱形
(1)菱形的四條邊都相等
(2)菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角
(3)菱形被兩條對(duì)角線分成四個(gè)全等的直角三角形
(4)菱形的面積等于兩條對(duì)角線長(zhǎng)的積的一半
2、s菱=爭(zhēng)6(n、6分別為對(duì)角線長(zhǎng))
3、判定:
(1)有一組鄰邊相等的平行四邊形叫做菱形
(2)四條邊都相等的四邊形是菱形
(3)對(duì)角線互相垂直的平行四邊形是菱形
4、對(duì)稱(chēng)性:菱形是軸對(duì)稱(chēng)圖形也是中心對(duì)稱(chēng)圖形
四、正方形定義、性質(zhì)及判定
1、定義:有一組鄰邊相等并且有一個(gè)角是直角的平行四邊形叫做正方形
2、性質(zhì):
(1)正方形四個(gè)角都是直角,四條邊都相等
(2)正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角
(3)正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形
(4)正方形的對(duì)角線與邊的夾角是45°
(5)正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形
3、判定:
(1)先判定一個(gè)四邊形是矩形,再判定出有一組鄰邊相等
(2)先判定一個(gè)四邊形是菱形,再判定出有一個(gè)角是直角
4、對(duì)稱(chēng)性:正方形是軸對(duì)稱(chēng)圖形也是中心對(duì)稱(chēng)圖形
五、梯形的定義、等腰梯形的性質(zhì)及判定
2、等腰梯形的性質(zhì):等腰梯形的兩腰相等;同一底上的兩個(gè)角相等;兩條對(duì)角線相等
4、對(duì)稱(chēng)性:等腰梯形是軸對(duì)稱(chēng)圖形
六、三角形的中位線平行于三角形的第三邊并等于第三邊的一半;梯形的中位線平行于梯形的兩底并等于兩底和的一半。
七、線段的重心是線段的中點(diǎn);平行四邊形的重心是兩對(duì)角線的交點(diǎn);三角形的重心是三條中線的交點(diǎn)。
八、依次連接任意一個(gè)四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形。
九、多邊形
1、多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。
2、多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。
3、多邊形的外角:多邊形的一邊與它的鄰邊的延長(zhǎng)線組成的角叫做多邊形的外角。
4、多邊形的對(duì)角線:連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對(duì)角線。
5、多邊形的分類(lèi):分為凸多邊形及凹多邊形,凸多邊形又可稱(chēng)為平面多邊形,凹多邊形又稱(chēng)空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內(nèi)角相等。
6、正多邊形:在平面內(nèi),各個(gè)角都相等,各條邊都相等的多邊形叫做正多邊形。
7、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。
8、公式與性質(zhì)
多邊形內(nèi)角和公式:n邊形的內(nèi)角和等于(n-2)·180°
9、多邊形外角和定理:
(1)n邊形外角和等于n·180°-(n-2)·180°=360°
10、多邊形對(duì)角線的條數(shù):
(2)n邊形共有n(n-3)/2條對(duì)角線
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇七
完成作業(yè)前一定要再閱讀一遍教材,認(rèn)真回顧老師在課堂上所講的內(nèi)容,然后再去寫(xiě)作業(yè)。作業(yè)一定要養(yǎng)成獨(dú)立思考的好習(xí)慣,針對(duì)一道問(wèn)題要學(xué)會(huì)多從不同的方法,不同的角度入手,多從典型題目中探索多種解題方法,從中得到聯(lián)想和啟發(fā)。
在較短的時(shí)間里進(jìn)行知識(shí)的鞏固,對(duì)知識(shí)的理解及運(yùn)用的效果是最佳的,反之則效果不會(huì)明顯,要做到學(xué)而時(shí)習(xí)之。
2、反思。
學(xué)生在完成學(xué)習(xí)任務(wù)的基礎(chǔ)上還要進(jìn)行知識(shí)的梳理,多樹(shù)立數(shù)學(xué)解題的思想,比如分類(lèi)的思想,整體的思想,方程的思想,數(shù)形結(jié)合的思想,方程的思想函數(shù)的思想等常用的解題思想。同時(shí)還要對(duì)重點(diǎn)習(xí)題多問(wèn)幾個(gè)為什么,如果把這些題目中所示的已知條件改變、添加一些條件,結(jié)論與條件互換,原來(lái)的結(jié)論還存在嗎?只有多多練習(xí)才會(huì)做到游刃有余。
3、整理。
對(duì)于數(shù)學(xué)學(xué)習(xí)中,如試卷、作業(yè)中出現(xiàn)的錯(cuò)誤,一定要及時(shí)弄懂,分析好自己做錯(cuò)題目的原因,最好在錯(cuò)題本中及時(shí)記錄下來(lái),每隔一段時(shí)間就鞏固一下。在學(xué)習(xí)中絕對(duì)不能讓同樣的錯(cuò)誤出現(xiàn)第二次。
數(shù)學(xué)是人類(lèi)文化的重要組成部分,良好的數(shù)學(xué)素養(yǎng)是當(dāng)代社會(huì)每個(gè)公民應(yīng)該具備的基本素養(yǎng)。作為促進(jìn)學(xué)生全面發(fā)展教育的重要組成部分,數(shù)學(xué)教學(xué)既要是學(xué)生掌握現(xiàn)代生活和學(xué)習(xí)中所需要的數(shù)學(xué)知識(shí)與技能,更要發(fā)揮數(shù)學(xué)在培養(yǎng)人的思維能力和創(chuàng)造能力。學(xué)習(xí)數(shù)學(xué)要做到有方法、有計(jì)劃與合理的安排,只有做到循序漸進(jìn),才會(huì)獲得最終的勝利。
將本文的word文檔下載到電腦,方便收藏和打印。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇八
我們?cè)诔踔袛?shù)學(xué)的學(xué)習(xí)中,將在一個(gè)平面內(nèi),一組鄰邊相等的平行四邊形成為菱形。
對(duì)角線相互垂直的平行四邊形是菱形(rhombus)
四條邊都相等的四邊形是菱形(rhombus)
菱形的特殊性質(zhì)
1、對(duì)角線互相垂直且平分,并且每條對(duì)角線平分一組對(duì)角;
2、四條邊都相等;
3、對(duì)角相等,鄰角互補(bǔ);
4、菱形既是軸對(duì)稱(chēng)圖形,對(duì)稱(chēng)軸是兩條對(duì)角線所在直線,也是中心對(duì)稱(chēng)圖形,
5、在60°的菱形中,短對(duì)角線等于邊長(zhǎng),長(zhǎng)對(duì)角線是短對(duì)角線的根號(hào)三倍。
菱形是特殊的平行四邊形,它具備平行四邊形的一切性質(zhì)。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇九
異號(hào)相加大減小,大數(shù)決定和符號(hào)。
互為相反數(shù)求和,結(jié)果是零須記好。
【注】“大”減“小”是指絕對(duì)值的大小。
有理數(shù)的減法運(yùn)算。
減正等于加負(fù),減負(fù)等于加正。
有理數(shù)的乘法運(yùn)算符號(hào)法則。
同號(hào)得正異號(hào)負(fù),一項(xiàng)為零積是零。
合并同類(lèi)項(xiàng)。
說(shuō)起合并同類(lèi)項(xiàng),法則千萬(wàn)不能忘。
只求系數(shù)代數(shù)和,字母指數(shù)留原樣。
去、添括號(hào)法則。
去括號(hào)或添括號(hào),關(guān)鍵要看連接號(hào)。
擴(kuò)號(hào)前面是正號(hào),去添括號(hào)不變號(hào)。
括號(hào)前面是負(fù)號(hào),去添括號(hào)都變號(hào)。
解方程。
已知未知鬧分離,分離要靠移完成。
移加變減減變加,移乘變除除變乘。
平方差公式。
兩數(shù)和乘兩數(shù)差,等于兩數(shù)平方差。
積化和差變兩項(xiàng),完全平方不是它。
完全平方公式。
二數(shù)和或差平方,展開(kāi)式它共三項(xiàng)。
首平方與末平方,首末二倍中間放。
和的平方加聯(lián)結(jié),先減后加差平方。
完全平方公式。
首平方又末平方,二倍首末在中央。
和的平方加再加,先減后加差平方。
解一元一次方程。
先去分母再括號(hào),移項(xiàng)變號(hào)要記牢。
同類(lèi)各項(xiàng)去合并,系數(shù)化“1”還沒(méi)好。
求得未知須檢驗(yàn),回代值等才算了。
解一元一次方程。
先去分母再括號(hào),移項(xiàng)合并同類(lèi)項(xiàng)。
系數(shù)化1還沒(méi)好,準(zhǔn)確無(wú)誤不白忙。
因式分解與乘法。
和差化積是乘法,乘法本身是運(yùn)算。
積化和差是分解,因式分解非運(yùn)算。
因式分解。
兩式平方符號(hào)異,因式分解你別怕。
兩底和乘兩底差,分解結(jié)果就是它。
兩式平方符號(hào)同,底積2倍坐中央。
因式分解能與否,符號(hào)上面有文章。
同和異差先平方,還要加上正負(fù)號(hào)。
同正則正負(fù)就負(fù),異則需添冪符號(hào)。
因式分解。
一提二套三分組,十字相乘也上數(shù)。
四種方法都不行,拆項(xiàng)添項(xiàng)去重組。
重組無(wú)望試求根,換元或者算余數(shù)。
多種方法靈活選,連乘結(jié)果是基礎(chǔ)。
同式相乘若出現(xiàn),乘方表示要記住,
備考資料。
【注】一提(提公因式)二*(*公式)。
因式分解。
一提二套三分組,叉乘求根也上數(shù)。
五種方法都不行,拆項(xiàng)添項(xiàng)去重組。
對(duì)癥下藥穩(wěn)又準(zhǔn),連乘結(jié)果是基礎(chǔ)。
二次三項(xiàng)式的因式分解。
先想完全平方式,十字相乘是其次。
兩種方法行不通,求根分解去嘗試。
比和比例。
兩數(shù)相除也叫比,兩比相等叫比例。
外項(xiàng)積等內(nèi)項(xiàng)積,等積可化八比例。
分別交換內(nèi)外項(xiàng),統(tǒng)統(tǒng)都要叫更比。
同時(shí)交換內(nèi)外項(xiàng),便要稱(chēng)其為反比。
前后項(xiàng)和比后項(xiàng),比值不變叫合比。
前后項(xiàng)差比后項(xiàng),組成比例是分比。
兩項(xiàng)和比兩項(xiàng)差,比值相等合分比。
前項(xiàng)和比后項(xiàng)和,比值不變叫等比。
解比例。
外項(xiàng)積等內(nèi)項(xiàng)積,列出方程并解之。
求比值。
由已知去求比值,多種途徑可利用。
活用比例七性質(zhì),變量替換也走紅。
消元也是好辦法,殊途同歸會(huì)變通。
正比例與反比例。
商定變量成正比,積定變量成反比。
正比例與反比例。
變化過(guò)程商一定,兩個(gè)變量成正比。
變化過(guò)程積一定,兩個(gè)變量成反比。
判斷四數(shù)成比例。
四數(shù)是否成比例,遞增遞減先排序。
兩端積等中間積,四數(shù)一定成比例。
判斷四式成比例。
四式是否成比例,升或降冪先排序。
兩端積等中間積,四式便可成比例。
比例中項(xiàng)。
成比例的四項(xiàng)中,外項(xiàng)相同會(huì)遇到。
有時(shí)內(nèi)項(xiàng)會(huì)相同,比例中項(xiàng)少不了。
比例中項(xiàng)很重要,多種場(chǎng)合會(huì)碰到。
成比例的四項(xiàng)中,外項(xiàng)相同有不少。
有時(shí)內(nèi)項(xiàng)會(huì)相同,比例中項(xiàng)出現(xiàn)了。
同數(shù)平方等異積,比例中項(xiàng)無(wú)處逃。
根式與無(wú)理式。
表示方根代數(shù)式,都可稱(chēng)其為根式。
根式異于無(wú)理式,被開(kāi)方式無(wú)限制。
被開(kāi)方式有字母,才能稱(chēng)為無(wú)理式。
無(wú)理式都是根式,區(qū)分它們有標(biāo)志。
被開(kāi)方式有字母,又可稱(chēng)為無(wú)理式。
求定義域。
求定義域有講究,四項(xiàng)原則須留意。
負(fù)數(shù)不能開(kāi)平方,分母為零無(wú)意義。
指是分?jǐn)?shù)底正數(shù),數(shù)零沒(méi)有零次冪。
限制條件不唯一,滿(mǎn)足多個(gè)不等式。
求定義域要過(guò)關(guān),四項(xiàng)原則須注意。
負(fù)數(shù)不能開(kāi)平方,分母為零無(wú)意義。
分?jǐn)?shù)指數(shù)底正數(shù),數(shù)零沒(méi)有零次冪。
限制條件不唯一,不等式組求解集。