作為一位杰出的老師,編寫教案是必不可少的,教案有助于順利而有效地開展教學(xué)活動(dòng)。既然教案這么重要,那到底該怎么寫一篇優(yōu)質(zhì)的教案呢?以下我給大家整理了一些優(yōu)質(zhì)的教案范文,希望對(duì)大家能夠有所幫助。
高中數(shù)學(xué)教案全套必修一篇一
了解現(xiàn)實(shí)世界和日常生活中的不等關(guān)系,了解不等式(組)的實(shí)際背景.
(2)一元二次不等式。
會(huì)從實(shí)際情境中抽象出一元二次不等式模型.
通過函數(shù)圖象了解一元二次不等式與相應(yīng)的二次函數(shù)、一元二次方程的聯(lián)系.
會(huì)解一元二次不等式,對(duì)給定的一元二次不等式,會(huì)設(shè)計(jì)求解的程序框圖.
(3)二元一次不等式組與簡單線性規(guī)劃問題。
會(huì)從實(shí)際情境中抽象出二元一次不等式組.
了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組.
會(huì)從實(shí)際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決.
(4)基本不等式:
了解基本不等式的證明過程.
高中數(shù)學(xué)教案全套必修一篇二
(二)倍角公式。
2cos2α=1+cos2α2sin2α=1-cos2α。
注意:倍角公式揭示了具有倍數(shù)關(guān)系的兩個(gè)角的三角函數(shù)的運(yùn)算規(guī)律,可實(shí)現(xiàn)函數(shù)式的降冪的變化。
注:(1)兩角和與差的三角函數(shù)公式能夠解答的三類基本題型:求值題,化簡題,證明題。
(2)對(duì)公式會(huì)“正用”,“逆用”,“變形使用”;。
(3)掌握“角的演變”規(guī)律,
(4)將公式和其它知識(shí)銜接起來使用。
重點(diǎn)難點(diǎn)。
重點(diǎn):幾組三角恒等式的應(yīng)用。
難點(diǎn):靈活應(yīng)用和、差、倍角等公式進(jìn)行三角式化簡、求值、證明恒等式。
高中數(shù)學(xué)教案全套必修一篇三
集合這部分的主要內(nèi)容是集合的概念、表示方法和集合之間的關(guān)系和運(yùn)算??v觀近幾年高考題,集合的考查以選擇題、填空題為主要題型。集合的概念和基本運(yùn)算是本章的重點(diǎn)內(nèi)容,也是高考的必考內(nèi)容。復(fù)習(xí)中首先要把握基礎(chǔ)知識(shí),深刻理解本章的基礎(chǔ)知識(shí)點(diǎn),重點(diǎn)掌握集合的概念和運(yùn)算。本章常用的數(shù)學(xué)思想方法主要有:數(shù)形結(jié)合的思想,如常借助于維恩圖、數(shù)軸解決問題;分類討論的思想,如一元二次方程根的討論、集合的包含關(guān)系等。復(fù)習(xí)時(shí)要重視對(duì)基本思想方法的滲透,逐步培養(yǎng)用數(shù)學(xué)思想方法來分析問題、解決問題的能力。
(二)規(guī)律方法總結(jié)。
1、集合中元素的互異性是集合概念的重點(diǎn)考查內(nèi)容。一般給出兩個(gè)集合,并告知兩個(gè)集合之間的關(guān)系,求集合中某個(gè)參數(shù)的范圍或值的時(shí)候,要特別驗(yàn)證是否符合元素之間互異性。2、考查集合的運(yùn)算和包含關(guān)系,解題中常用到分類討論思想,分類時(shí)注意不重不漏,尤其注意討論集合為空集的情況。3、新定義的集合運(yùn)算問題是以已知的集合或運(yùn)算為背景,引出新的集合概念或運(yùn)算,仔細(xì)審題,弄清新定義的意義才是關(guān)鍵。
基本初等函數(shù)。
基本初等函數(shù)的內(nèi)容是函數(shù)的基礎(chǔ),也是研究其他較復(fù)雜函數(shù)的轉(zhuǎn)化目標(biāo),掌握基本初等函數(shù)的圖象和性質(zhì)是學(xué)習(xí)函數(shù)知識(shí)的必要的一步。與指數(shù)函數(shù)、對(duì)數(shù)函數(shù)有關(guān)的試題,大多以考查基本初等函數(shù)的性質(zhì)為依托,結(jié)合運(yùn)算推理來解題。所以這部分內(nèi)容更注重通過函數(shù)圖象讀取各種信息,從而研究函數(shù)的性質(zhì),熟練掌握函數(shù)圖象的各種變換方式,培養(yǎng)運(yùn)用數(shù)形結(jié)合思想來解題的能力。
(二)規(guī)律方法總結(jié)。
1、指數(shù)函數(shù)多與一次函數(shù)、二次函數(shù)、反比例函數(shù)等知識(shí)結(jié)合考查綜合應(yīng)用知識(shí)解決函數(shù)問題的能力。指數(shù)方程的求解常利用換元法轉(zhuǎn)化為一元二次方程求解。由指數(shù)函數(shù)和二次函數(shù)、反比例函數(shù)結(jié)合成的函數(shù)的單調(diào)性的判定注意底數(shù)與1的關(guān)系的判定。
2、解對(duì)數(shù)方程(或不等式)就是將對(duì)數(shù)方程(或不等式)化為有理方程(或不等式)。要注意轉(zhuǎn)化必須是等價(jià)的,特別要考慮到對(duì)數(shù)函數(shù)定義域。
高中數(shù)學(xué)教案全套必修一篇四
圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無數(shù)次實(shí)踐后的高度抽象、恰當(dāng)?shù)乩枚x__題,許多時(shí)候能以簡馭繁、因此,在學(xué)習(xí)了橢圓、雙曲線、拋物線的定義及標(biāo)準(zhǔn)方程、幾何性質(zhì)后,再一次強(qiáng)調(diào)定義,學(xué)會(huì)利用圓錐曲線定義來熟練的解題”。
二、學(xué)生學(xué)習(xí)情況分析。
我所任教班級(jí)的學(xué)生參與課堂教學(xué)活動(dòng)的積極性強(qiáng),思維活躍,但計(jì)算能力較差,推理能力較弱,使用數(shù)學(xué)語言的表達(dá)能力也略顯不足。
三、設(shè)計(jì)思想。
四、教學(xué)目標(biāo)。
1、深刻理解并熟練掌握?qǐng)A錐曲線的定義,能靈活應(yīng)用__解決問題;熟練掌握焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)、焦距、離心率、準(zhǔn)線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識(shí)求解圓錐曲線的方程。
2、通過對(duì)練習(xí),強(qiáng)化對(duì)圓錐曲線定義的理解,提高分析、解決問題的能力;通過對(duì)問題的不斷引申,精心設(shè)問,引導(dǎo)學(xué)生學(xué)習(xí)解題的一般方法。
3、借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣、
五、教學(xué)重點(diǎn)與難點(diǎn):
教學(xué)重點(diǎn)。
1、對(duì)圓錐曲線定義的理解。
2、利用圓錐曲線的定義求“最值”
3、“定義法”求軌跡方程。
教學(xué)難點(diǎn):
巧用圓錐曲線定義__。
高中數(shù)學(xué)教案全套必修一篇五
函數(shù)思想在解題中的應(yīng)用主要表現(xiàn)在兩個(gè)方面:一是借助有關(guān)初等函數(shù)的性質(zhì),解有關(guān)求值、解(證)不等式、解方程以及討論參數(shù)的取值范圍等問題:二是在問題的研究中,通過建立函數(shù)關(guān)系式或構(gòu)造中間函數(shù),把所研究的問題轉(zhuǎn)化為討論函數(shù)的有關(guān)性質(zhì),達(dá)到化難為易,化繁為簡的目的。函數(shù)與方程的思想是中學(xué)數(shù)學(xué)的基本思想,也是歷年高考的重點(diǎn)。
1、函數(shù)的思想,是用運(yùn)動(dòng)和變化的觀點(diǎn),分析和研究數(shù)學(xué)中的數(shù)量關(guān)系,建立函數(shù)關(guān)系或構(gòu)造函數(shù),運(yùn)用函數(shù)的圖像和性質(zhì)去分析問題、轉(zhuǎn)化問題,從而使問題獲得解決。
3、函數(shù)方程思想的幾種重要形式。
(1)函數(shù)和方程是密切相關(guān)的,對(duì)于函數(shù)y=f(x),當(dāng)y=0時(shí),就轉(zhuǎn)化為方程f(x)=0,也可以把函數(shù)式y(tǒng)=f(x)看做二元方程y-f(x)=0。
(6)立體幾何中有關(guān)線段、角、面積、體積的計(jì)算,經(jīng)常需要運(yùn)用布列方程或建立函數(shù)表達(dá)式的方法加以解決。
高中數(shù)學(xué)教案全套必修一篇六
1.理解直線的方程的概念,會(huì)判斷一個(gè)點(diǎn)是否在一條直線上.
2.培養(yǎng)學(xué)生勇于發(fā)現(xiàn)、勇于探索的精神,培養(yǎng)學(xué)生合作交流等良好品質(zhì).
【教學(xué)重點(diǎn)】。
直線的特征性質(zhì),直線的方程的概念.
【教學(xué)難點(diǎn)】。
直線的方程的概念.
【教學(xué)方法】。
這節(jié)課主要采用分組探究教學(xué)法.本節(jié)首先利用一次函數(shù)的解析式與圖象的關(guān)系,揭示代數(shù)方程與圖形之間的關(guān)系,然后用集合表示的性質(zhì)描述法闡述直線與方程的對(duì)應(yīng)關(guān)系,進(jìn)而給出直線的方程的概念.本節(jié)教學(xué)中,要突出用集合的觀點(diǎn)完成由形到數(shù)、由數(shù)到形的轉(zhuǎn)化.
【教學(xué)過程】。
環(huán)節(jié)。
教學(xué)內(nèi)容。
師生互動(dòng)。
設(shè)計(jì)意圖。
引入。
1.用性質(zhì)描述法表示大于0的偶數(shù)構(gòu)成的集合,并判斷-1和6在不在這個(gè)集合中.
2.作函數(shù)y=x+3的圖象,并判斷點(diǎn)(0,1)和(-2,1)在不在函數(shù)的圖象上.
教師提出問題,學(xué)生解答.
教師點(diǎn)評(píng).
復(fù)習(xí)本節(jié)相關(guān)內(nèi)容.
新課。
1.函數(shù)與圖象。
一次函數(shù)的圖象是一條直線,如y=x+3的圖象是直線ab,如圖所示.
2.直線的特征性質(zhì)。
例如,通過點(diǎn)(2,0)且垂直于x軸的直線l.
一般地,在平面直角坐標(biāo)系中,給定一條直線,如果直線上點(diǎn)的坐標(biāo)都滿足某個(gè)方程,而且滿足這個(gè)方程的坐標(biāo)所表示的點(diǎn)都在直線上,那么這個(gè)方程叫做直線的方程.
例分別給出下列直線的方程:
(1)直線m平行于x軸,且通過點(diǎn)(-2,2);。
(2)y軸所在的直線.
練習(xí)。
(1)寫出垂直于x軸且過點(diǎn)(5,-1)的直線方程.
(2)已知點(diǎn)(a,3)在方程為y=x+1的直線上,求a的值.
師:y=x+3是一個(gè)代數(shù)方程,而直線ab是一個(gè)幾何圖形,也就是說,代數(shù)方程可以用幾何圖形表示,幾何圖形也可以用代數(shù)方程來表示.
學(xué)生在教師引導(dǎo)下理解代數(shù)方程與幾何圖形的對(duì)應(yīng)關(guān)系.
師:既然直線是點(diǎn)的集合,那么我們就可以利用集合的特征性質(zhì)來解決這一問題.
師:如圖,在直線l上的點(diǎn)的橫坐標(biāo)有什么特點(diǎn)?橫坐標(biāo)是2的點(diǎn)也一定在直線l上嗎?
直線l的特征性質(zhì)能用x=2來表述嗎?
學(xué)生回答教師提出的問題.
師:對(duì)于平面直角坐標(biāo)系中的任意一點(diǎn),只要看它的坐標(biāo)是否滿足x=2,就能判斷出點(diǎn)是否在直線l上.
點(diǎn)a(2,1)的坐標(biāo)滿足方程x=2嗎?點(diǎn)a在直線l上嗎?
點(diǎn)b(2.3,2)滿足方程x=2嗎?點(diǎn)b在直線l上嗎?
教師強(qiáng)調(diào)要從兩方面來說明某個(gè)方程是不是給定直線的方程.
師:由上面分析,通過點(diǎn)(2,0)且垂直于x軸的直線l的方程是什么?
學(xué)生回答.
教師引導(dǎo)學(xué)生解答.引導(dǎo)過程中進(jìn)一步強(qiáng)調(diào)直線上的點(diǎn)的坐標(biāo)都滿足方程,而且滿足這個(gè)方程的坐標(biāo)所表示的點(diǎn)都在直線上.
學(xué)生小組合作完成練習(xí),教師巡視了解學(xué)生掌握情況.
由特殊到一般,為引入直線的方程提供基礎(chǔ).
提出解決問題的方法.
引導(dǎo)學(xué)生分析直線l的坐標(biāo)特點(diǎn),為概念的引入打下基礎(chǔ).
通過具體的例子來說明判斷某點(diǎn)是否在給定直線上的方法.
通過例題進(jìn)一步加強(qiáng)學(xué)生對(duì)概念的理解.
小結(jié)。
1.直線的方程的概念.
師生共同回顧本節(jié)內(nèi)容,進(jìn)一步深化對(duì)概念的理解.
總結(jié)本節(jié)內(nèi)容.
作業(yè)。
教材p73練習(xí)a組題.
教材p73練習(xí)b組題(選做).
學(xué)生標(biāo)記作業(yè).
針對(duì)學(xué)生實(shí)際,對(duì)課后書面作業(yè)實(shí)施分層設(shè)置.
語文、數(shù)學(xué)、英語、歷史、地理、政治、化學(xué)、物理、生物、美術(shù)、音樂、體育、信息技術(shù)。
語文、數(shù)學(xué)、英語、歷史、地理、政治、化學(xué)、物理、生物、美術(shù)、音樂、體育、信息技術(shù)。
高中數(shù)學(xué)教案全套必修一篇七
1、把握菱形的判定。
2、通過運(yùn)用菱形知識(shí)解決具體問題,提高分析能力和觀察能力。
3、通過教具的演示培養(yǎng)學(xué)生的學(xué)習(xí)愛好。
4、根據(jù)平行四邊形與矩形、菱形的從屬關(guān)系,通過畫圖向?qū)W生滲透集合思想。
二、教法設(shè)計(jì)。
觀察分析討論相結(jié)合的方法。
三、重點(diǎn)·難點(diǎn)·疑點(diǎn)及解決辦法。
1、教學(xué)重點(diǎn):菱形的判定方法。
2、教學(xué)難點(diǎn):菱形判定方法的綜合應(yīng)用。
四、課時(shí)安排。
1課時(shí)。
五、教具學(xué)具預(yù)備。
教具(做一個(gè)短邊可以運(yùn)動(dòng)的平行四邊形)、投影儀和膠片,常用畫圖工具。
六、師生互動(dòng)活動(dòng)設(shè)計(jì)。
教師演示教具、創(chuàng)設(shè)情境,引入新課,學(xué)生觀察討論;學(xué)生分析論證方法,教師適時(shí)點(diǎn)撥。
七、教學(xué)步驟。
復(fù)習(xí)提問。
1、敘述菱形的定義與性質(zhì)。
2、菱形兩鄰角的比為1:2,較長對(duì)角線為,則對(duì)角線交點(diǎn)到一邊距離為________.
引入新課。
師問:要判定一個(gè)四邊形是不是菱形最基本的判定方法是什么方法?
生答:定義法。
此外還有別的兩種判定方法,下面就來學(xué)習(xí)這兩種方法。
講解新課。
菱形判定定理1:四邊都相等的四邊形是菱形。
菱形判定定理2:對(duì)角錢互相垂直的'平行四邊形是菱形。圖1。
分析判定1:首先證它是平行四邊形,再證一組鄰邊相等,依定義即知為菱形。
分析判定2:。
師問:本定理有幾個(gè)條件?
生答:兩個(gè)。
師問:哪兩個(gè)?
生答:(1)是平行四邊形(2)兩條對(duì)角線互相垂直。
師問:再需要什么條件可證該平行四邊形是菱形?
生答:再證兩鄰邊相等。
(由學(xué)生口述證實(shí))。
證實(shí)時(shí)讓學(xué)生注重線段垂直平分線在這里的應(yīng)用,
師問:對(duì)角線互相垂直的四邊形是菱形嗎?為什么?
可畫出圖,顯然對(duì)角線,但都不是菱形。
菱形常用的判定方法歸納為(學(xué)生討論歸納后,由教師板書):。
注重:(2)與(4)的題設(shè)也是從四邊形出發(fā),和矩形一樣它們的題沒條件都包含有平行四邊形的判定條件。
例4已知:的對(duì)角錢的垂直平分線與邊、分別交于、,如圖。
求證:四邊形是菱形(按教材講解)。
總結(jié)、擴(kuò)展。
1、小結(jié):。
(1)歸納判定菱形的四種常用方法。
(2)說明矩形、菱形之間的區(qū)別與聯(lián)系。
2、思考題:已知:如圖4△中,,平分,,,交于。
求證:四邊形為菱形。
八、布置作業(yè)。
教材p159中9、10、11、13。
高中數(shù)學(xué)教案全套必修一篇八
解三角形及應(yīng)用舉例。
教學(xué)重難點(diǎn)。
解三角形及應(yīng)用舉例。
教學(xué)過程。
一?;A(chǔ)知識(shí)精講。
掌握三角形有關(guān)的定理。
利用正弦定理,可以解決以下兩類問題:
(1)已知兩角和任一邊,求其他兩邊和一角;
(2)已知兩邊和其中一邊的對(duì)角,求另一邊的對(duì)角(從而進(jìn)一步求出其他的邊和角);
利用余弦定理,可以解決以下兩類問題:
(1)已知三邊,求三角;(2)已知兩邊和它們的夾角,求第三邊和其他兩角。
掌握正弦定理、余弦定理及其變形形式,利用三角公式解一些有關(guān)三角形中的三角函數(shù)問題。
二。問題討論。
思維點(diǎn)撥:已知兩邊和其中一邊的對(duì)角解三角形問題,用正弦定理解,但需注意解的情況的討論。
思維點(diǎn)撥::三角形中的三角變換,應(yīng)靈活運(yùn)用正、余弦定理。在求值時(shí),要利用三角函數(shù)的有關(guān)性質(zhì)。
例6:在某海濱城市附近海面有一臺(tái)風(fēng),據(jù)檢測,當(dāng)前臺(tái)。
風(fēng)中心位于城市o(如圖)的東偏南方向。
300km的海面p處,并以20km/h的速度向西偏北的。
方向移動(dòng),臺(tái)風(fēng)侵襲的范圍為圓形區(qū)域,當(dāng)前半徑為60km,
并以10km/h的速度不斷增加,問幾小時(shí)后該城市開始受到。
臺(tái)風(fēng)的侵襲。
一。小結(jié):
1、利用正弦定理,可以解決以下兩類問題:
(1)已知兩角和任一邊,求其他兩邊和一角;
(2)已知兩邊和其中一邊的對(duì)角,求另一邊的對(duì)角(從而進(jìn)一步求出其他的邊和角);2。利用余弦定理,可以解決以下兩類問題:
(1)已知三邊,求三角;(2)已知兩邊和它們的夾角,求第三邊和其他兩角。
3、邊角互化是解三角形問題常用的手段。
三。作業(yè):p80闖關(guān)訓(xùn)練。
高中數(shù)學(xué)教案全套必修一篇九
一、說教材:
1、地位、作用和特點(diǎn):
《___》是高中數(shù)學(xué)課本第__冊(cè)(_修)的第__章“___”的第__節(jié)內(nèi)容。
本節(jié)是在學(xué)習(xí)了之后編排的。通過本節(jié)課的學(xué)習(xí),既可以對(duì)的知識(shí)進(jìn)一步鞏固和深化,又可以為后面學(xué)習(xí)打下基礎(chǔ),所以是本章的重要內(nèi)容。此外,《__》的知識(shí)與我們?nèi)粘I?、生產(chǎn)、科學(xué)研究有著密切的聯(lián)系,因此學(xué)習(xí)這部分有著廣泛的現(xiàn)實(shí)意義。本節(jié)的特點(diǎn)之一是__;特點(diǎn)之二是:___。
教學(xué)目標(biāo):
根據(jù)《教學(xué)大綱》的要求和學(xué)生已有的知識(shí)基礎(chǔ)和認(rèn)知能力,確定以下教學(xué)目標(biāo):
(1)知識(shí)目標(biāo):a、b、c。
(2)能力目標(biāo):a、b、c。
(3)德育目標(biāo):a、b。
教學(xué)的重點(diǎn)和難點(diǎn):
(1)教學(xué)重點(diǎn):
(2)教學(xué)難點(diǎn):
二、說教法:
基于上面的教材分析,我根據(jù)自己對(duì)研究性學(xué)習(xí)“啟發(fā)式”教學(xué)模式和新課程改革的理論認(rèn)識(shí),結(jié)合本校學(xué)生實(shí)際,主要突出了幾個(gè)方面:一是創(chuàng)設(shè)問題情景,充分調(diào)動(dòng)學(xué)生求知欲,并以此來激發(fā)學(xué)生的探究心理。二是運(yùn)用啟發(fā)式教學(xué)方法,就是把教和學(xué)的各種方法綜合起來統(tǒng)一組織運(yùn)用于教學(xué)過程,以求獲得效果。另外還注意獲得和交換信息渠道的綜合、教學(xué)手段的綜合和課堂內(nèi)外的綜合。并且在整個(gè)教學(xué)設(shè)計(jì)盡量做到注意學(xué)生的心理特點(diǎn)和認(rèn)知規(guī)律,觸發(fā)學(xué)生的思維,使教學(xué)__真正成為學(xué)生的學(xué)習(xí)過程,以思維教學(xué)代替單純的記憶教學(xué)。三是注重滲透數(shù)學(xué)思考方法(聯(lián)想法、類比法、數(shù)形結(jié)合等一般科學(xué)方法)。讓學(xué)生在探索學(xué)習(xí)知識(shí)的過程中,領(lǐng)會(huì)常見數(shù)學(xué)思想方法,培養(yǎng)學(xué)生的探索能力和創(chuàng)造性素質(zhì)。四是注意在探究問題時(shí)留給學(xué)生充分的時(shí)間,以利于開放學(xué)生的思維。當(dāng)然這就應(yīng)在處理教學(xué)內(nèi)容時(shí)能夠做到葉老師所說“教就是為了不教”。因此,擬對(duì)本節(jié)課設(shè)計(jì)如下教學(xué)程序:
導(dǎo)入新課新課教學(xué)反饋發(fā)展。
三、說學(xué)法:
學(xué)生學(xué)習(xí)的過程實(shí)際上就是學(xué)生主動(dòng)獲取、整理、貯存、運(yùn)用知識(shí)和獲得學(xué)習(xí)能力的過程,因此,我覺得在教學(xué)中,指導(dǎo)學(xué)生學(xué)習(xí)時(shí),應(yīng)盡量避免單純地、直露地向?qū)W生灌輸某種學(xué)習(xí)方法。有效的能被學(xué)生接受的學(xué)法指導(dǎo)應(yīng)是滲透在教學(xué)過程中進(jìn)行的,是通過優(yōu)化教學(xué)程序來增強(qiáng)學(xué)法指導(dǎo)的目的性和實(shí)效性。在本節(jié)課的教學(xué)中主要滲透以下幾個(gè)方面的學(xué)法指導(dǎo)。
1、培養(yǎng)學(xué)生學(xué)會(huì)通過自學(xué)、觀察、實(shí)驗(yàn)等方法獲取相關(guān)知識(shí),使學(xué)生在探索研究過程中分析、歸納、推理能力得到提高。
本節(jié)教師通過列舉具體事例來進(jìn)行分析,歸納出,并依據(jù)此知識(shí)與具體事例結(jié)合、推導(dǎo)出,這正是一個(gè)分析和推理的全過程。
2、讓學(xué)生親自經(jīng)歷運(yùn)用科學(xué)方法探索的過程。主要是努力創(chuàng)設(shè)應(yīng)用科學(xué)方法探索、解決問題情境,讓學(xué)生在探索中體會(huì)科學(xué)方法,如在講授時(shí),可通過演示,創(chuàng)設(shè)探索規(guī)律的情境,引導(dǎo)學(xué)生以可靠的事實(shí)為基礎(chǔ),經(jīng)過抽象思維揭示內(nèi)在規(guī)律,從而使學(xué)生領(lǐng)悟到把可靠的事實(shí)和深刻的理論思維結(jié)合起來的特點(diǎn)。
3、讓學(xué)生在探索性實(shí)驗(yàn)中自己摸索方法,觀察和分析現(xiàn)象,從而發(fā)現(xiàn)“新”的問題或探索出“新”的規(guī)律。從而培養(yǎng)學(xué)生的發(fā)散思維和收斂思維能力,激發(fā)學(xué)生的創(chuàng)造動(dòng)力。在實(shí)踐中要盡可能讓學(xué)生多動(dòng)腦、多動(dòng)手、多觀察、多交流、多分析;老師要給學(xué)生多點(diǎn)撥、多啟發(fā)、多激勵(lì),不斷地尋找學(xué)生思維和操作上的閃光點(diǎn),及時(shí)總結(jié)和推廣。
4、在指導(dǎo)學(xué)生解決問題時(shí),引導(dǎo)學(xué)生通過比較、猜測、嘗試、質(zhì)疑、發(fā)現(xiàn)等探究環(huán)節(jié)選擇合適的概念、規(guī)律和解決問題方法,從而克服思維定勢的消極影響,促進(jìn)知識(shí)的正向遷移。如教師引導(dǎo)學(xué)生對(duì)比中,蘊(yùn)含的本質(zhì)差異,從而擺脫知識(shí)遷移的負(fù)面影響。這樣,既有利于學(xué)生養(yǎng)成認(rèn)真分析過程、善于比較的好習(xí)慣,又有利于培養(yǎng)學(xué)生通過現(xiàn)象發(fā)掘知識(shí)內(nèi)在本質(zhì)的能力。
四、教學(xué)過程:
(一)、課題引入:
教師創(chuàng)設(shè)問題情景(創(chuàng)設(shè)情景:a、教師演示實(shí)驗(yàn)。b、使用多媒體模擬一些比較有趣、與生活實(shí)踐比較有關(guān)的事例。c、講述數(shù)學(xué)科學(xué)的有關(guān)情況。)激發(fā)學(xué)生的探究__,引導(dǎo)學(xué)生提出接下去要研究的問題。
(二)、新課教學(xué):
1、針對(duì)上面提出的問題,設(shè)計(jì)學(xué)生動(dòng)手實(shí)踐,讓學(xué)生通過動(dòng)手探索有關(guān)的知識(shí),并引導(dǎo)學(xué)生進(jìn)行交流、討論得出新知,并進(jìn)一步提出下面的問題。
2、組織學(xué)生進(jìn)行新問題的實(shí)驗(yàn)方法設(shè)計(jì)—這時(shí)在設(shè)計(jì)上是有對(duì)比性、數(shù)學(xué)方法性的設(shè)計(jì)實(shí)驗(yàn),指導(dǎo)學(xué)生實(shí)驗(yàn)、通過多媒體的輔助,顯示學(xué)生的實(shí)驗(yàn)數(shù)據(jù),模擬強(qiáng)化出實(shí)驗(yàn)情況,由學(xué)生分析比較,歸納總結(jié)出知識(shí)的結(jié)構(gòu)。
(三)、實(shí)施反饋:
1、課堂反饋,遷移知識(shí)(遷移到與生活有關(guān)的例子)。讓學(xué)生分析有關(guān)的問題,實(shí)現(xiàn)知識(shí)的升華、實(shí)現(xiàn)學(xué)生的再次創(chuàng)新。
2、課后反饋,延續(xù)創(chuàng)新。通過課后練習(xí),學(xué)生互改作業(yè),課后研實(shí)驗(yàn),實(shí)現(xiàn)課堂內(nèi)外的綜合,實(shí)現(xiàn)創(chuàng)新精神的延續(xù)。
五、板書設(shè)計(jì):
在教學(xué)中我把黑板分為三部分,把知識(shí)要點(diǎn)寫在左側(cè),中間知識(shí)推導(dǎo)過程,右邊實(shí)例應(yīng)用。
六、說課綜述:
以上是我對(duì)《___》這節(jié)教材的認(rèn)識(shí)和對(duì)教學(xué)過程的設(shè)計(jì)。在整個(gè)課堂中,我引導(dǎo)學(xué)生回顧前面學(xué)過的知識(shí),并把它運(yùn)用到對(duì)的認(rèn)識(shí),使學(xué)生的認(rèn)知活動(dòng)逐步深化,既掌握了知識(shí),又學(xué)會(huì)了方法。
總之,對(duì)課堂的設(shè)計(jì),我始終在努力貫徹以教師為主導(dǎo),以學(xué)生為主體,以問題為基礎(chǔ),以能力、方法為主線,有計(jì)劃培養(yǎng)學(xué)生的自學(xué)能力、觀察和實(shí)踐能力、思維能力、應(yīng)用知識(shí)解決實(shí)際問題的能力和創(chuàng)造能力為指導(dǎo)思想。并且能從各種實(shí)際出發(fā),充分利用各種教學(xué)手段來激發(fā)學(xué)生的學(xué)習(xí)興趣,體現(xiàn)了對(duì)學(xué)生創(chuàng)新意識(shí)的培養(yǎng)。