又大又粗又硬又爽又黄毛片,国产精品亚洲第一区在线观看,国产男同GAYA片大全,一二三四视频社区5在线高清

當(dāng)前位置:網(wǎng)站首頁(yè) >> 作文 >> 數(shù)學(xué)高中知識(shí)點(diǎn)總結(jié)文科(精選十六篇)

數(shù)學(xué)高中知識(shí)點(diǎn)總結(jié)文科(精選十六篇)

格式:DOC 上傳日期:2023-03-30 14:12:24
數(shù)學(xué)高中知識(shí)點(diǎn)總結(jié)文科(精選十六篇)
時(shí)間:2023-03-30 14:12:24     小編:zdfb

總結(jié)是對(duì)過(guò)去一定時(shí)期的工作、學(xué)習(xí)或思想情況進(jìn)行回顧、分析,并做出客觀評(píng)價(jià)的書(shū)面材料,它可使零星的、膚淺的、表面的感性認(rèn)知上升到全面的、系統(tǒng)的、本質(zhì)的理性認(rèn)識(shí)上來(lái),讓我們一起認(rèn)真地寫(xiě)一份總結(jié)吧。那么我們?cè)撊绾螌?xiě)一篇較為完美的總結(jié)呢?以下是小編精心整理的總結(jié)范文,供大家參考借鑒,希望可以幫助到有需要的朋友。

數(shù)學(xué)高中知識(shí)點(diǎn)總結(jié)文科篇一

(1)共面:平行、相交

(2)異面:

異面直線的定義:不同在任何一個(gè)平面內(nèi)的兩條直線或既不平行也不相交。

異面直線判定定理:用平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線,與平面內(nèi)不經(jīng)過(guò)該點(diǎn)的直線是異面直線。

兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法

兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法

(1)有且僅有一個(gè)公共點(diǎn)——相交直線;

(2)沒(méi)有公共點(diǎn)——平行或異面

直線和平面的位置關(guān)系:

直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行

①直線在平面內(nèi)——有無(wú)數(shù)個(gè)公共點(diǎn)

②直線和平面相交——有且只有一個(gè)公共點(diǎn)

直線與平面所成的角:平面的一條斜線和它在這個(gè)平面內(nèi)的射影所成的銳角。

數(shù)學(xué)高中知識(shí)點(diǎn)總結(jié)文科篇二

1、求函數(shù)的單調(diào)性:

利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本方法:設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),(1)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù);(2)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù);(3)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù)。

利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本步驟:①求函數(shù)yf(x)的定義域;②求導(dǎo)數(shù)f(x);③解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為增區(qū)間;④解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為減區(qū)間。

反過(guò)來(lái),也可以利用導(dǎo)數(shù)由函數(shù)的單調(diào)性解決相關(guān)問(wèn)題(如確定參數(shù)的取值范圍):設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),

(1)如果函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);

(2)如果函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);

(3)如果函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù),則f(x)0恒成立。

2、求函數(shù)的極值:

設(shè)函數(shù)yf(x)在x0及其附近有定義,如果對(duì)x0附近的所有的點(diǎn)都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函數(shù)f(x)的極小值(或極大值)。

可導(dǎo)函數(shù)的極值,可通過(guò)研究函數(shù)的單調(diào)性求得,基本步驟是:

(1)確定函數(shù)f(x)的定義域;(2)求導(dǎo)數(shù)f(x);(3)求方程f(x)0的全部實(shí)根,x1x2xn,順次將定義域分成若干個(gè)小區(qū)間,并列表:x變化時(shí),f(x)和f(x)值的

變化情況:

(4)檢查f(x)的符號(hào)并由表格判斷極值。

3、求函數(shù)的最大值與最小值:

如果函數(shù)f(x)在定義域i內(nèi)存在x0,使得對(duì)任意的xi,總有f(x)f(x0),則稱f(x0)為函數(shù)在定義域上的最大值。函數(shù)在定義域內(nèi)的極值不一定唯一,但在定義域內(nèi)的最值是唯一的。

求函數(shù)f(x)在區(qū)間[a,b]上的最大值和最小值的步驟:(1)求f(x)在區(qū)間(a,b)上的極值;

(2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區(qū)間[a,b]上的最大值與最小值。

4、解決不等式的有關(guān)問(wèn)題:

(1)不等式恒成立問(wèn)題(絕對(duì)不等式問(wèn)題)可考慮值域。

f(x)(xa)的值域是[a,b]時(shí),

不等式f(x)0恒成立的充要條件是f(x)max0,即b0;

不等式f(x)0恒成立的充要條件是f(x)min0,即a0。

f(x)(xa)的值域是(a,b)時(shí),

不等式f(x)0恒成立的充要條件是b0;不等式f(x)0恒成立的充要條件是a0。

(2)證明不等式f(x)0可轉(zhuǎn)化為證明f(x)max0,或利用函數(shù)f(x)的單調(diào)性,轉(zhuǎn)化為證明f(x)f(x0)0。

5、導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用:

實(shí)際生活求解最大(小)值問(wèn)題,通常都可轉(zhuǎn)化為函數(shù)的最值。在利用導(dǎo)數(shù)來(lái)求函數(shù)最值時(shí),一定要注意,極值點(diǎn)唯一的單峰函數(shù),極值點(diǎn)就是最值點(diǎn),在解題時(shí)要加以說(shuō)明。

數(shù)學(xué)高中知識(shí)點(diǎn)總結(jié)文科篇三

空間兩條直線只有三種位置關(guān)系:平行、相交、異面。

按是否共面可分為兩類:

(1)共面:平行、相交

(2)異面:

異面直線的定義:不同在任何一個(gè)平面內(nèi)的兩條直線或既不平行也不相交。

異面直線判定定理:用平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線,與平面內(nèi)不經(jīng)過(guò)該點(diǎn)的直線是異面直線。

兩異面直線所成的角:范圍為(0°,90°)esp。空間向量法。

兩異面直線間距離:公垂線段(有且只有一條)esp??臻g向量法。

若從有無(wú)公共點(diǎn)的角度看可分為兩類:

(1)有且僅有一個(gè)公共點(diǎn)——相交直線;(2)沒(méi)有公共點(diǎn)——平行或異面。

直線和平面的位置關(guān)系:

直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行。

①直線在平面內(nèi)——有無(wú)數(shù)個(gè)公共點(diǎn)

②直線和平面相交——有且只有一個(gè)公共點(diǎn)

直線與平面所成的角:平面的一條斜線和它在這個(gè)平面內(nèi)的射影所成的銳角。

空間向量法(找平面的法向量)

規(guī)定:a、直線與平面垂直時(shí),所成的角為直角;b、直線與平面平行或在平面內(nèi),所成的角為0°角。

由此得直線和平面所成角的取值范圍為[0°,90°]。

最小角定理:斜線與平面所成的角是斜線與該平面內(nèi)任一條直線所成角中的最小角。

三垂線定理及逆定理:如果平面內(nèi)的一條直線,與這個(gè)平面的一條斜線的射影垂直,那么它也與這條斜線垂直。

直線和平面垂直

直線和平面垂直的定義:如果一條直線a和一個(gè)平面內(nèi)的任意一條直線都垂直,我們就說(shuō)直線a和平面互相垂直。直線a叫做平面的垂線,平面叫做直線a的垂面。

直線與平面垂直的判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個(gè)平面。

直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。直線和平面平行——沒(méi)有公共點(diǎn)

直線和平面平行的定義:如果一條直線和一個(gè)平面沒(méi)有公共點(diǎn),那么我們就說(shuō)這條直線和這個(gè)平面平行。

直線和平面平行的判定定理:如果平面外一條直線和這個(gè)平面內(nèi)的一條直線平行,那么這條直線和這個(gè)平面平行。

直線和平面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過(guò)這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行。

數(shù)學(xué)高中知識(shí)點(diǎn)總結(jié)文科篇四

軌跡,包含兩個(gè)方面的問(wèn)題:凡在軌跡上的點(diǎn)都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點(diǎn)都不符合給定的條件,也就是符合給定條件的點(diǎn)必在軌跡上,這叫做軌跡的完備性(也叫做充分性)。

1、建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動(dòng)點(diǎn)m的坐標(biāo);

2、寫(xiě)出點(diǎn)m的集合;

3、列出方程=0;

4、化簡(jiǎn)方程為最簡(jiǎn)形式;

5、檢驗(yàn)。

求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。

1、直譯法:直接將條件翻譯成等式,整理化簡(jiǎn)后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

2、定義法:如果能夠確定動(dòng)點(diǎn)的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫(xiě)出方程,這種求軌跡方程的方法叫做定義法。

3、相關(guān)點(diǎn)法:用動(dòng)點(diǎn)q的坐標(biāo)x,y表示相關(guān)點(diǎn)p的坐標(biāo)x0、y0,然后代入點(diǎn)p的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡(jiǎn)便得到動(dòng)點(diǎn)q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。

4、參數(shù)法:當(dāng)動(dòng)點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。

5、交軌法:將兩動(dòng)曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動(dòng)曲線交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。

求動(dòng)點(diǎn)軌跡方程的一般步驟:

①建系——建立適當(dāng)?shù)淖鴺?biāo)系;

②設(shè)點(diǎn)——設(shè)軌跡上的任一點(diǎn)p(x,y);

③列式——列出動(dòng)點(diǎn)p所滿足的關(guān)系式;

④代換——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于x,y的方程式,并化簡(jiǎn);

⑤證明——證明所求方程即為符合條件的動(dòng)點(diǎn)軌跡方程。

數(shù)學(xué)高中知識(shí)點(diǎn)總結(jié)文科篇五

1.平面上到定點(diǎn)的距離等于定長(zhǎng)的所有點(diǎn)組成的圖形叫做圓。定點(diǎn)稱為圓心,定長(zhǎng)稱為半徑。

2.圓上任意兩點(diǎn)間的部分叫做圓弧,簡(jiǎn)稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意兩點(diǎn)的線段叫做弦。經(jīng)過(guò)圓心的弦叫

做直徑。

3.頂點(diǎn)在圓心上的角叫做圓心角。頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角。

4.過(guò)三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個(gè)三角形的內(nèi)切圓,其圓心稱為內(nèi)心。

5.直線與圓有3種位置關(guān)系:無(wú)公共點(diǎn)為相離;有2個(gè)公共點(diǎn)為相交;圓與直線有唯一公共點(diǎn)為相切,這條直線叫做圓的切線,這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)。

6.兩圓之間有5種位置關(guān)系:無(wú)公共點(diǎn)的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點(diǎn)的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有2個(gè)公共點(diǎn)的叫相交。兩圓圓心之間的距離叫做圓心距。

7.在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側(cè)面展開(kāi)圖是一個(gè)扇形。這個(gè)扇形的半徑成為圓錐的母線。

圓--⊙ 半徑—r 弧--⌒ 直徑—d

扇形弧長(zhǎng)/圓錐母線—l 周長(zhǎng)—c 面積—s三、有關(guān)圓的基本性質(zhì)與定理(27個(gè))

1.點(diǎn)p與圓o的位置關(guān)系(設(shè)p是一點(diǎn),則po是點(diǎn)到圓心的距離):

p在⊙o外,po>r;p在⊙o上,po=r;p在⊙o內(nèi),po

2.圓是軸對(duì)稱圖形,其對(duì)稱軸是任意一條過(guò)圓心的直線。圓也是中心對(duì)稱圖形,其對(duì)稱中心是圓心。

3.垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的弧。逆定

理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的弧。

4.在同圓或等圓中,如果2個(gè)圓心角,2個(gè)圓周角,2條弧,2條弦中有一組量相等,那么他們所對(duì)應(yīng)的其余各組量都分別相等。

5.一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半。

6.直徑所對(duì)的圓周角是直角。90度的圓周角所對(duì)的弦是直徑。

7.不在同一直線上的3個(gè)點(diǎn)確定一個(gè)圓。

8.一個(gè)三角形有唯一確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直平分線的交點(diǎn),到三角形3個(gè)頂點(diǎn)距離相等;內(nèi)切圓的圓心是三角形各內(nèi)角平分線的交點(diǎn),到三角形3邊距離相等。

9.直線ab與圓o的位置關(guān)系(設(shè)op⊥ab于p,則po是ab到圓心的距

離):

ab與⊙o相離,po>r;ab與⊙o相切,po=r;ab與⊙o相交,po

10.圓的切線垂直于過(guò)切點(diǎn)的直徑;經(jīng)過(guò)直徑的一端,并且垂直于這條直徑的直線,是這個(gè)圓的切線。

11.圓與圓的位置關(guān)系(設(shè)兩圓的半徑分別為r和r,且r≥r,圓心距為p):

外離p>r+r;外切p=r+r;相交r-r

1.圓的周長(zhǎng)c=2πr=πd

2.圓的面積s=s=πr?

3.扇形弧長(zhǎng)l=nπr/180

4.扇形面積s=nπr? /360=rl/2

5.圓錐側(cè)面積s=πrl

1.圓的標(biāo)準(zhǔn)方程

在平面直角坐標(biāo)系中,以點(diǎn)o(a,b)為圓心,以r為半徑的圓的標(biāo)準(zhǔn)方程是

(x-a)^2+(y-b)^2=r^2

2.圓的一般方程

把圓的標(biāo)準(zhǔn)方程展開(kāi),移項(xiàng),合并同類項(xiàng)后,可得圓的一般方程是

x^2+y^2+dx+ey+f=0

和標(biāo)準(zhǔn)方程對(duì)比,其實(shí)d=-2a,e=-2b,f=a^2+b^2

相關(guān)知識(shí):圓的離心率e=0.在圓上任意一點(diǎn)的曲率半徑都是r.

平面內(nèi),直線ax+by+c=o與圓x^2+y^2+dx+ey+f=0的位置關(guān)系判斷一般方法是

討論如下2種情況:

(1)由ax+by+c=o可得y=(-c-ax)/b,[其中b不等于0],

代入x^2+y^2+dx+ey+f=0,即成為一個(gè)關(guān)于x的'一元二次方程f(x)=0.

利用判別式b^2-4ac的符號(hào)可確定圓與直線的位置關(guān)系如下:

如果b^2-4ac>0,則圓與直線有2交點(diǎn),即圓與直線相交

如果b^2-4ac=0,則圓與直線有1交點(diǎn),即圓與直線相切

如果b^2-4ac<0,則圓與直線有0交點(diǎn),即圓與直線相離

(2)如果b=0即直線為ax+c=0,即x=-c/a.它平行于y軸(或垂直于x軸)

將x^2+y^2+dx+ey+f=0化為(x-a)^2+(y-b)^2=r^2

令y=b,求出此時(shí)的兩個(gè)x值x1,x2,并且我們規(guī)定x1

當(dāng)x=-c/ax2時(shí),直線與圓相離

當(dāng)x1

當(dāng)x=-c/a=x1或x=-c/a=x2時(shí),直線與圓相切

圓的定理:

1.不在同一直線上的三點(diǎn)確定一個(gè)圓。

2.垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧

推論1.①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧

②弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧

③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧

推論2.圓的兩條平行弦所夾的弧相等

3.圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形

4.圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合

5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

6.圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

7.同圓或等圓的半徑相等

8.到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓

9.定理 在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦 相等,所對(duì)的弦的弦心距相等

10.推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等

11.定理 圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它 的內(nèi)對(duì)角

12.①直線l和⊙o相交 d

②直線l和⊙o相切 d=r

③直線l和⊙o相離 d>r

13.切線的判定定理 經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線

14.切線的性質(zhì)定理 圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑

15.推論1 經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn)

16.推論2 經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心

17.切線長(zhǎng)定理 從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等, 圓心和這一點(diǎn)的連線平分兩條切線的夾角

18.圓的外切四邊形的兩組對(duì)邊的和相等 外角等于內(nèi)對(duì)角

19.如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上

20.①兩圓外離 d>r+r ②兩圓外切 d=r+r

③兩圓相交 r-rr)

④兩圓內(nèi)切 d=r-r(r>r) ⑤兩圓內(nèi)含dr)

21.定理 相交兩圓的連心線垂直平分兩圓的公共弦

22.定理 把圓分成n(n≥3):

(1)依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

(2)經(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

23.定理 任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓

24.正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n

25.定理 正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

26.正n邊形的面積sn=pnrn/2 p表示正n邊形的周長(zhǎng)

27.正三角形面積√3a/4 a表示邊長(zhǎng)

28.如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

29.弧長(zhǎng)計(jì)算公式:l=n兀r/180

30.扇形面積公式:s扇形=n兀r^2/360=lr/2

31.內(nèi)公切線長(zhǎng)= d-(r-r) 外公切線長(zhǎng)= d-(r+r)

32.定理 一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半

33.推論1 同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等

34.推論2 半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所 對(duì)的弦是直徑

35.弧長(zhǎng)公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r

數(shù)學(xué)高中知識(shí)點(diǎn)總結(jié)文科篇六

1、平面的基本性質(zhì):

公理1如果一條直線的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在這個(gè)平面內(nèi);

公理2過(guò)不在一條直線上的三點(diǎn),有且只有一個(gè)平面;

公理3如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線。

2、空間點(diǎn)、直線、平面之間的位置關(guān)系:

直線與直線—平行、相交、異面;

直線與平面—平行、相交、直線屬于該平面(線在面內(nèi),最易忽視);

平面與平面—平行、相交。

3、異面直線:

平面外一點(diǎn)a與平面一點(diǎn)b的連線和平面內(nèi)不經(jīng)過(guò)點(diǎn)b的直線是異面直線(判定);

所成的角范圍(0,90)度(平移法,作平行線相交得到夾角或其補(bǔ)角);

兩條直線不是異面直線,則兩條直線平行或相交(反證);

異面直線不同在任何一個(gè)平面內(nèi)。

求異面直線所成的角:平移法,把異面問(wèn)題轉(zhuǎn)化為相交直線的夾角

1、直線與平面平行(核心)

定義:直線和平面沒(méi)有公共點(diǎn)

判定:不在一個(gè)平面內(nèi)的一條直線和平面內(nèi)的一條直線平行,則該直線平行于此平面(由線線平行得出)

性質(zhì):一條直線和一個(gè)平面平行,經(jīng)過(guò)這條直線的平面和這個(gè)平面相交,則這條直線就和兩平面的交線平行

2、平面與平面平行

定義:兩個(gè)平面沒(méi)有公共點(diǎn)

判定:一個(gè)平面內(nèi)有兩條相交直線平行于另一個(gè)平面,則這兩個(gè)平面平行

性質(zhì):兩個(gè)平面平行,則其中一個(gè)平面內(nèi)的直線平行于另一個(gè)平面;如果兩個(gè)平行平面同時(shí)與第三個(gè)平面相交,那么它們的交線平行。

3、常利用三角形中位線、平行四邊形對(duì)邊、已知直線作一平面找其交線

1、直線與平面垂直

定義:直線與平面內(nèi)任意一條直線都垂直

判定:如果一條直線與一個(gè)平面內(nèi)的兩條相交的直線都垂直,則該直線與此平面垂直

性質(zhì):垂直于同一直線的兩平面平行

推論:如果在兩條平行直線中,有一條垂直于一個(gè)平面,那么另一條也垂直于這個(gè)平面

直線和平面所成的角:【0,90】度,平面內(nèi)的一條斜線和它在平面內(nèi)的射影說(shuō)成的銳角,特別規(guī)定垂直90度,在平面內(nèi)或者平行0度

2、平面與平面垂直

定義:兩個(gè)平面所成的二面角(從一條直線出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(二面角的平面角:以二面角的棱上任一點(diǎn)為端點(diǎn),在兩個(gè)半平面內(nèi)分別作垂直于棱的兩條射線所成的角)

判定:一個(gè)平面過(guò)另一個(gè)平面的垂線,則這兩個(gè)平面垂直

性質(zhì):兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直

數(shù)學(xué)高中知識(shí)點(diǎn)總結(jié)文科篇七

1、集合;

2、子集;

3、補(bǔ)集;

4、交集;

5、并集;

6、邏輯連結(jié)詞;

7、四種命題;

8、充要條件。

1、映射;

2、函數(shù);

3、函數(shù)的單調(diào)性;

4、反函數(shù);

5、互為反函數(shù)的函數(shù)圖象間的關(guān)系;

6、指數(shù)概念的擴(kuò)充;

7、有理指數(shù)冪的運(yùn)算;

8、指數(shù)函數(shù);

9、對(duì)數(shù);

10、對(duì)數(shù)的運(yùn)算性質(zhì);

11、對(duì)數(shù)函數(shù)。

12、函數(shù)的應(yīng)用舉例。

1、數(shù)列;

2、等差數(shù)列及其通項(xiàng)公式;

3、等差數(shù)列前n項(xiàng)和公式;

4、等比數(shù)列及其通頂公式;

5、等比數(shù)列前n項(xiàng)和公式。

1、角的概念的推廣;

2、弧度制;

3、任意角的三角函數(shù);

4、單位圓中的三角函數(shù)線;

5、同角三角函數(shù)的基本關(guān)系式;

6、正弦、余弦的誘導(dǎo)公式;

7、兩角和與差的正弦、余弦、正切;

8、二倍角的正弦、余弦、正切;

9、正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);

10、周期函數(shù);

11、函數(shù)的奇偶性;

12、函數(shù)的圖象;

13、正切函數(shù)的圖象和性質(zhì);

14、已知三角函數(shù)值求角;

15、正弦定理;

16、余弦定理;

17、斜三角形解法舉例。

1、向量;

2、向量的加法與減法;

3、實(shí)數(shù)與向量的積;

4、平面向量的坐標(biāo)表示;

5、線段的定比分點(diǎn);

6、平面向量的數(shù)量積;

7、平面兩點(diǎn)間的距離;

8、平移。

1、不等式;

2、不等式的基本性質(zhì);

3、不等式的證明;

4、不等式的解法;

5、含絕對(duì)值的不等式。

1、直線的傾斜角和斜率;

2、直線方程的點(diǎn)斜式和兩點(diǎn)式;

3、直線方程的一般式;

4、兩條直線平行與垂直的條件;

5、兩條直線的交角;

6、點(diǎn)到直線的距離;

7、用二元一次不等式表示平面區(qū)域;

8、簡(jiǎn)單線性規(guī)劃問(wèn)題;

9、曲線與方程的概念;

10、由已知條件列出曲線方程;

11、圓的標(biāo)準(zhǔn)方程和一般方程;

12、圓的參數(shù)方程。

1、橢圓及其標(biāo)準(zhǔn)方程;

2、橢圓的簡(jiǎn)單幾何性質(zhì);

3、橢圓的參數(shù)方程;

4、雙曲線及其標(biāo)準(zhǔn)方程;

5、雙曲線的簡(jiǎn)單幾何性質(zhì);

6、拋物線及其標(biāo)準(zhǔn)方程;

7、拋物線的簡(jiǎn)單幾何性質(zhì)。

1、平面及基本性質(zhì);

2、平面圖形直觀圖的畫(huà)法;

3、平面直線;

4、直線和平面平行的判定與性質(zhì);

5、直線和平面垂直的判定與性質(zhì);

6、三垂線定理及其逆定理;

7、兩個(gè)平面的位置關(guān)系;

8、空間向量及其加法、減法與數(shù)乘;

9、空間向量的坐標(biāo)表示;

10、空間向量的數(shù)量積;

11、直線的方向向量;

12、異面直線所成的角;

13、異面直線的公垂線;

14、異面直線的距離;

15、直線和平面垂直的性質(zhì);

16、平面的法向量;

17、點(diǎn)到平面的距離;

18、直線和平面所成的角;

19、向量在平面內(nèi)的射影;

20、平面與平面平行的性質(zhì);

21、平行平面間的距離;

22、二面角及其平面角;

23、兩個(gè)平面垂直的判定和性質(zhì);

24、多面體;

25、棱柱;

26、棱錐;

27、正多面體;

28、球。

1、分類計(jì)數(shù)原理與分步計(jì)數(shù)原理;

2、排列;

3、排列數(shù)公式;

4、組合;

5、組合數(shù)公式;

6、組合數(shù)的兩個(gè)性質(zhì);

7、二項(xiàng)式定理;

8、二項(xiàng)展開(kāi)式的性質(zhì)。

1、隨機(jī)事件的概率;

2、等可能事件的概率;

3、互斥事件有一個(gè)發(fā)生的概率;

4、相互獨(dú)立事件同時(shí)發(fā)生的概率;

5、獨(dú)立重復(fù)試驗(yàn)。

1、函數(shù)的奇偶性

(1)若f(x)是偶函數(shù),那么f(x)=f(—x);

(2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));

(3)判斷函數(shù)奇偶性可用定義的等價(jià)形式:f(x)±f(—x)=0或(f(x)≠0);

(4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡(jiǎn),再判斷其奇偶性;

(5)奇函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;

2、復(fù)合函數(shù)的有關(guān)問(wèn)題

(1)復(fù)合函數(shù)定義域求法:若已知的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域(即f(x)的定義域);研究函數(shù)的問(wèn)題一定要注意定義域優(yōu)先的原則。

(2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;

3、函數(shù)圖像(或方程曲線的對(duì)稱性)

(1)證明函數(shù)圖像的對(duì)稱性,即證明圖像上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在圖像上;

(2)證明圖像c1與c2的對(duì)稱性,即證明c1上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在c2上,反之亦然;

(3)曲線c1:f(x,y)=0,關(guān)于y=x+a(y=—x+a)的對(duì)稱曲線c2的方程為f(y—a,x+a)=0(或f(—y+a,—x+a)=0);

(4)曲線c1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對(duì)稱曲線c2方程為:f(2a—x,2b—y)=0;

(5)若函數(shù)y=f(x)對(duì)x∈r時(shí),f(a+x)=f(a—x)恒成立,則y=f(x)圖像關(guān)于直線x=a對(duì)稱;

(6)函數(shù)y=f(x—a)與y=f(b—x)的圖像關(guān)于直線x=對(duì)稱;

4、函數(shù)的周期性

(1)y=f(x)對(duì)x∈r時(shí),f(x +a)=f(x—a)或f(x—2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);

(2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為2︱a︱的周期函數(shù);

(3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為4︱a︱的周期函數(shù);

(4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對(duì)稱,則f(x)是周期為2的周期函數(shù);

(5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對(duì)稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);

(6)y=f(x)對(duì)x∈r時(shí),f(x+a)=—f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);

5、方程k=f(x)有解k∈d(d為f(x)的值域);

6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

7、(1)(a>0,a≠1,b>0,n∈r+);

(2)l og a n=(a>0,a≠1,b>0,b≠1);

(3)l og a b的符號(hào)由口訣“同正異負(fù)”記憶;

(4)a log a n= n(a>0,a≠1,n>0);

8、判斷對(duì)應(yīng)是否為映射時(shí),抓住兩點(diǎn):

(1)a中元素必須都有象且唯一;

(2)b中元素不一定都有原象,并且a中不同元素在b中可以有相同的象;

9、能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。

10、對(duì)于反函數(shù),應(yīng)掌握以下一些結(jié)論:

(1)定義域上的單調(diào)函數(shù)必有反函數(shù);

(2)奇函數(shù)的反函數(shù)也是奇函數(shù);

(3)定義域?yàn)榉菃卧丶呐己瘮?shù)不存在反函數(shù);

(4)周期函數(shù)不存在反函數(shù);

(5)互為反函數(shù)的兩個(gè)函數(shù)具有相同的單調(diào)性;

(6)y=f(x)與y=f—1(x)互為反函數(shù),設(shè)f(x)的定義域?yàn)閍,值域?yàn)閎,則有f[f——1(x)]=x(x∈b),f——1[f(x)]=x(x∈a)。

11、處理二次函數(shù)的問(wèn)題勿忘數(shù)形結(jié)合;二次函數(shù)在閉區(qū)間上必有最值,求最值問(wèn)題用“兩看法”:一看開(kāi)口方向;二看對(duì)稱軸與所給區(qū)間的相對(duì)位置關(guān)系;

12、依據(jù)單調(diào)性,利用一次函數(shù)在區(qū)間上的保號(hào)性可解決求一類參數(shù)的范圍問(wèn)題

13、恒成立問(wèn)題的處理方法:

(1)分離參數(shù)法;

(2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解。

數(shù)學(xué)高中知識(shí)點(diǎn)總結(jié)文科篇八

1:一般式:ax+by+c=0(a、b不同時(shí)為0)適用于所有直線

k=-a/b,b=-c/b

a1/a2=b1/b2≠c1/c2←→兩直線平行

a1/a2=b1/b2=c1/c2←→兩直線重合

橫截距a=-c/a

縱截距b=-c/b

2:點(diǎn)斜式:y-y0=k(x-x0)適用于不垂直于x軸的直線

表示斜率為k,且過(guò)(x0,y0)的直線

3:截距式:x/a+y/b=1適用于不過(guò)原點(diǎn)或不垂直于x軸、y軸的直線

表示與x軸、y軸相交,且x軸截距為a,y軸截距為b的直線

4:斜截式:y=kx+b適用于不垂直于x軸的直線

表示斜率為k且y軸截距為b的直線

5:兩點(diǎn)式:適用于不垂直于x軸、y軸的直線

表示過(guò)(x1,y1)和(x2,y2)的直線

(y-y1)/(y2-y1)=(x-x1)/(x2-x1)(x1≠x2,y1≠y2)

6:交點(diǎn)式:f1(x,y)m+f2(x,y)=0適用于任何直線

表示過(guò)直線f1(x,y)=0與直線f2(x,y)=0的交點(diǎn)的直線

7:點(diǎn)平式:f(x,y)-f(x0,y0)=0適用于任何直線

表示過(guò)點(diǎn)(x0,y0)且與直線f(x,y)=0平行的直線

8:法線式:x·cosα+ysinα-p=0適用于不平行于坐標(biāo)軸的直線

過(guò)原點(diǎn)向直線做一條的垂線段,該垂線段所在直線的傾斜角為α,p是該線段的長(zhǎng)度

9:點(diǎn)向式:(x-x0)/u=(y-y0)/v(u≠0,v≠0)適用于任何直線

表示過(guò)點(diǎn)(x0,y0)且方向向量為(u,v)的直線

10:法向式:a(x-x0)+b(y-y0)=0適用于任何直線

表示過(guò)點(diǎn)(x0,y0)且與向量(a,b)垂直的直線

11:點(diǎn)到直線距離

點(diǎn)p(x0,y0)到直線ι:ax+by+c=0的距離

d=|ax0+by0+c|/√a2+b2

兩平行線之間距離

若兩平行直線的方程分別為:

ax+by+c1=oax+by+c2=0則

這兩條平行直線間的距離d為:

d=丨c1-c2丨/√(a2+b2)

12:各種不同形式的直線方程的局限性:

(1)點(diǎn)斜式和斜截式都不能表示斜率不存在的直線;

(2)兩點(diǎn)式不能表示與坐標(biāo)軸平行的直線;

(3)截距式不能表示與坐標(biāo)軸平行或過(guò)原點(diǎn)的直線;

(4)直線方程的一般式中系數(shù)a、b不能同時(shí)為零.

13:位置關(guān)系

若直線l1:a1x+b1y+c1=0與直線l2:a2x+b2y+c2=0

1.當(dāng)a1b2-a2b1≠0時(shí),相交

2.a1/a2=b1/b2≠c1/c2,平行

3.a1/a2=b1/b2=c1/c2,重合

4.a1a2+b1b2=0,垂直

數(shù)學(xué)高中知識(shí)點(diǎn)總結(jié)文科篇九

1、圓柱體:表面積:2πrr+2πrh體積:πr2h(r為圓柱體上下底圓半徑,h為圓柱體高)。

2、圓錐體:表面積:πr2+πr[(h2+r2)的]體積:πr2h/3(r為圓錐體低圓半徑,h為其高。

3、a—邊長(zhǎng),s=6a2,v=a3。

4、長(zhǎng)方體a—長(zhǎng),b—寬,c—高s=2(ab+ac+bc)v=abc。

5、棱柱s—h—高v=sh。

6、棱錐s—h—高v=sh/3。

7、s1和s2—上、下h—高v=h[s1+s2+(s1s2)^1/2]/3。

8、s1—上底面積,s2—下底面積,s0—中h—高,v=h(s1+s2+4s0)/6。

9、圓柱r—底半徑,h—高,c—底面周長(zhǎng)s底—底面積,s側(cè)—,s表—表面積c=2πrs底=πr2,s側(cè)=ch,s表=ch+2s底,v=s底h=πr2h。

10、空心圓柱r—外圓半徑,r—內(nèi)圓半徑h—高v=πh(r^2—r^2)。

11、r—底半徑h—高v=πr^2h/3。

12、r—上底半徑,r—下底半徑,h—高v=πh(r2+rr+r2)/313、球r—半徑d—直徑v=4/3πr^3=πd^3/6。

14、球缺h—球缺高,r—球半徑,a—球缺底半徑v=πh(3a2+h2)/6=πh2(3r—h)/3。

15、球臺(tái)r1和r2—球臺(tái)上、下底半徑h—高v=πh[3(r12+r22)+h2]/6。

16、圓環(huán)體r—環(huán)體半徑d—環(huán)體直徑r—環(huán)體截面半徑d—環(huán)體截面直徑v=2π2rr2=π2dd2/4。

17、桶狀體d—桶腹直徑d—桶底直徑h—桶高v=πh(2d2+d2)/12,(母線是圓弧形,圓心是桶的中心)v=πh(2d2+dd+3d2/4)/15(母線是拋物線形)。

數(shù)學(xué)高中知識(shí)點(diǎn)總結(jié)文科篇十

1、集合的含義:某些指定的對(duì)象集在一起就成為一個(gè)集合,其中每一個(gè)對(duì)象叫元素。

2、集合的中元素的三個(gè)特性:

1)元素的確定性;

2)元素的互異性;

3)元素的無(wú)序性。

說(shuō)明:(1)對(duì)于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對(duì)象或者是或者不是這個(gè)給定的集合的元素。

(2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入一個(gè)集合時(shí),僅算一個(gè)元素。

(3)集合中的元素是平等的,沒(méi)有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

(4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。

3、集合的表示:{…}如{我校的籃球隊(duì)員},{太平洋大西洋印度洋北冰洋}

1)用拉丁字母表示集合:a={我校的籃球隊(duì)員}b={12345}。

2)集合的表示方法:列舉法與描述法。

注意?。撼S脭?shù)集及其記法:

非負(fù)整數(shù)集(即自然數(shù)集)記作:n

正整數(shù)集n_或n+整數(shù)集z有理數(shù)集q實(shí)數(shù)集r

關(guān)于“屬于”的概念

集合的元素通常用小寫(xiě)的拉丁字母表示,如:a是集合a的元素,就說(shuō)a屬于集合a記作a∈a,相反,a不屬于集合a記作a:a。

列舉法:把集合中的元素一一列舉出來(lái),然后用一個(gè)大括號(hào)括上。

描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào)內(nèi)表示集合的方法。用確定的條件表示某些對(duì)象是否屬于這個(gè)集合的方法。

①語(yǔ)言描述法:例:{不是直角三角形的三角形}

②數(shù)學(xué)式子描述法:例:不等式x—3>2的解集是{x?r|x—3>2}或{x|x—3>2}

4、集合的分類:

1)有限集含有有限個(gè)元素的集合。

2)無(wú)限集含有無(wú)限個(gè)元素的集合。

3)空集不含任何元素的集合例:{x|x2=—5}。

1、“包含”關(guān)系子集

注意:有兩種可能(1)a是b的一部分,;(2)a與b是同一集合。

反之:集合a不包含于集合b或集合b不包含集合a記作ab或ba。

2、“相等”關(guān)系(5≥5,且5≤5,則5=5)

實(shí)例:設(shè)a={x|x2—1=0}b={—11}“元素相同”

結(jié)論:對(duì)于兩個(gè)集合a與b,如果集合a的任何一個(gè)元素都是集合b的元素,同時(shí)集合b的任何一個(gè)元素都是集合a的元素,我們就說(shuō)集合a等于集合b,即:a=b。

①任何一個(gè)集合是它本身的子集。aa

②真子集:如果a?b且a?b那就說(shuō)集合a是集合b的真子集,記作ab(或ba)

③如果abbc那么ac

④如果ab同時(shí)ba那么a=b

3、不含任何元素的集合叫做空集,記為φ。

規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

1、交集的定義:一般地,由所有屬于a且屬于b的元素所組成的集合叫做ab的交集。

記作a∩b(讀作”a交b”),即a∩b={x|x∈a,且x∈b}。

2、并集的定義:一般地,由所有屬于集合a或?qū)儆诩蟗的元素所組成的集合,叫做ab的并集。記作:a∪b(讀作”a并b”),即a∪b={x|x∈a,或x∈b}。

3、交集與并集的性質(zhì):a∩a=aa∩φ=φa∩b=b∩a,a∪a=a,a∪φ=aa∪b=b∪a。

4、全集與補(bǔ)集

(1)補(bǔ)集:設(shè)s是一個(gè)集合,a是s的一個(gè)子集(即),由s中所有不屬于a的元素組成的集合,叫做s中子集a的補(bǔ)集(或余集)

記作:csa即csa={x?x?s且x?a}。

(2)全集:如果集合s含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集。通常用u來(lái)表示。

(3)性質(zhì):⑴cu(cua)=a⑵(cua)∩a=φ⑶(cua)∪a=u。

數(shù)學(xué)高中知識(shí)點(diǎn)總結(jié)文科篇十一

必修課程由5個(gè)模塊組成:

必修1:集合、函數(shù)概念與基本初等函數(shù)(指、對(duì)、冪函數(shù))

必修2:立體幾何初步、平面解析幾何初步。

必修3:算法初步、統(tǒng)計(jì)、概率。

必修4:基本初等函數(shù)(三角函數(shù))、平面向量、三角恒等變換。

必修5:解三角形、數(shù)列、不等式。

以上是每一個(gè)高中學(xué)生所必須學(xué)習(xí)的。

上述內(nèi)容覆蓋了高中階段傳統(tǒng)的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能的主要部分,其中包括集合、函數(shù)、數(shù)列、不等式、解三角形、立體幾何初步、平面解析幾何初步等。不同的是在保證打好基礎(chǔ)的同時(shí),進(jìn)一步強(qiáng)調(diào)了這些知識(shí)的發(fā)生、發(fā)展過(guò)程和實(shí)際應(yīng)用,而不在技巧與難度上做過(guò)高的要求。

此外,基礎(chǔ)內(nèi)容還增加了向量、算法、概率、統(tǒng)計(jì)等內(nèi)容。

重點(diǎn):函數(shù),數(shù)列,三角函數(shù),平面向量,圓錐曲線,立體幾何,導(dǎo)數(shù)

難點(diǎn):函數(shù)、圓錐曲線

高考相關(guān)考點(diǎn):

⑴集合與簡(jiǎn)易邏輯:集合的概念與運(yùn)算、簡(jiǎn)易邏輯、充要條件

⑵函數(shù):映射與函數(shù)、函數(shù)解析式與定義域、值域與最值、反函數(shù)、三大性質(zhì)、函數(shù)圖象、指數(shù)與指數(shù)函數(shù)、對(duì)數(shù)與對(duì)數(shù)函數(shù)、函數(shù)的應(yīng)用

⑶數(shù)列:數(shù)列的有關(guān)概念、等差數(shù)列、等比數(shù)列、數(shù)列求和、數(shù)列的應(yīng)用

⑷三角函數(shù):有關(guān)概念、同角關(guān)系與誘導(dǎo)公式、和、差、倍、半公式、求值、化簡(jiǎn)、證明、三角函數(shù)的圖象與性質(zhì)、三角函數(shù)的應(yīng)用

⑸平面向量:有關(guān)概念與初等運(yùn)算、坐標(biāo)運(yùn)算、數(shù)量積及其應(yīng)用

⑹不等式:概念與性質(zhì)、均值不等式、不等式的證明、不等式的解法、絕對(duì)值不等式、不等式的應(yīng)用

⑺直線和圓的方程:直線的方程、兩直線的位置關(guān)系、線性規(guī)劃、圓、直線與圓的位置關(guān)系

⑻圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關(guān)系、軌跡問(wèn)題、圓錐曲線的應(yīng)用

⑼直線、平面、簡(jiǎn)單幾何體:空間直線、直線與平面、平面與平面、棱柱、棱錐、球、空間向量

⑽排列、組合和概率:排列、組合應(yīng)用題、二項(xiàng)式定理及其應(yīng)用

⑾概率與統(tǒng)計(jì):概率、分布列、期望、方差、抽樣、正態(tài)分布

⑿導(dǎo)數(shù):導(dǎo)數(shù)的概念、求導(dǎo)、導(dǎo)數(shù)的應(yīng)用

⒀復(fù)數(shù):復(fù)數(shù)的概念與運(yùn)算

數(shù)學(xué)高中知識(shí)點(diǎn)總結(jié)文科篇十二

(1)定義:

如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)常數(shù)(不為零),那么這個(gè)數(shù)列就叫做等比數(shù)列.這個(gè)常數(shù)叫做等比數(shù)列的公比,通常用字母q表示,定義的表達(dá)式為an+1/an=q(n∈n_,q為非零常數(shù)).

(2)等比中項(xiàng):

如果a、g、b成等比數(shù)列,那么g叫做a與b的等比中項(xiàng).即:g是a與b的等比中項(xiàng)a,g,b成等比數(shù)列g(shù)2=ab.

通項(xiàng)公式:an=a1qn-1.

(1)在等比數(shù)列{an}中,若m+n=p+q=2r(m,n,p,q,r∈n_),則am·an=ap·aq=a.

特別地,a1an=a2an-1=a3an-2=….

(2)在公比為q的等比數(shù)列{an}中,數(shù)列am,am+k,am+2k,am+3k,…仍是等比數(shù)列,公比為qk;數(shù)列sm,s2m-sm,s3m-s2m,…仍是等比數(shù)列(此時(shí)q≠-1);an=amqn-m.

(1)從等比數(shù)列的定義看,等比數(shù)列的任意項(xiàng)都是非零的',公比q也是非零常數(shù).

(2)由an+1=qan,q≠0并不能立即斷言{an}為等比數(shù)列,還要驗(yàn)證a1≠0.

5.等比數(shù)列的前n項(xiàng)和sn

(1)等比數(shù)列的前n項(xiàng)和sn是用錯(cuò)位相減法求得的,注意這種思想方法在數(shù)列求和中的運(yùn)用.

(2)在運(yùn)用等比數(shù)列的前n項(xiàng)和公式時(shí),必須注意對(duì)q=1與q≠1分類討論,防止因忽略q=1這一特殊情形導(dǎo)致解題失誤.

數(shù)學(xué)高中知識(shí)點(diǎn)總結(jié)文科篇十三

感受在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,了解不等式(組)的實(shí)際背景。

①經(jīng)歷從實(shí)際情境中抽象出一元二次不等式模型的過(guò)程。

②通過(guò)函數(shù)圖象了解一元二次不等式與相應(yīng)函數(shù)、方程的聯(lián)系。

③會(huì)解一元二次不等式,對(duì)給定的一元二次不等式,嘗試設(shè)計(jì)求解的程序框圖。

①?gòu)膶?shí)際情境中抽象出二元一次不等式組。

②了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組(參見(jiàn)例2)。

③從實(shí)際情境中抽象出一些簡(jiǎn)單的二元線性規(guī)劃問(wèn)題,并能加以解決(參見(jiàn)例3)。

①探索并了解基本不等式的證明過(guò)程。

②會(huì)用基本不等式解決簡(jiǎn)單的(?。┲祮?wèn)題。

數(shù)學(xué)高中知識(shí)點(diǎn)總結(jié)文科篇十四

設(shè)函數(shù)f(x)在區(qū)間x上有定義,如果存在m>0,對(duì)于一切屬于區(qū)間x上的x,恒有|f(x)|≤m,則稱f(x)在區(qū)間x上有界,否則稱f(x)在區(qū)間上無(wú)界.

設(shè)函數(shù)f(x)的定義域?yàn)閐,區(qū)間i包含于d.如果對(duì)于區(qū)間上任意兩點(diǎn)x1及x2,當(dāng)x1f(x2),則稱函數(shù)f(x)在區(qū)間i上是單調(diào)遞減的.單調(diào)遞增和單調(diào)遞減的函數(shù)統(tǒng)稱為單調(diào)函數(shù).

設(shè)為一個(gè)實(shí)變量實(shí)值函數(shù),若有f(—x)=—f(x),則f(x)為奇函數(shù).

幾何上,一個(gè)奇函數(shù)關(guān)于原點(diǎn)對(duì)稱,亦即其圖像在繞原點(diǎn)做180度旋轉(zhuǎn)后不會(huì)改變.

奇函數(shù)的例子有x、sin(x)、sinh(x)和erf(x).

設(shè)f(x)為一實(shí)變量實(shí)值函數(shù),若有f(x)=f(—x),則f(x)為偶函數(shù).

幾何上,一個(gè)偶函數(shù)關(guān)于y軸對(duì)稱,亦即其圖在對(duì)y軸映射后不會(huì)改變.

偶函數(shù)的例子有|x|、x2、cos(x)和cosh(x).

偶函數(shù)不可能是個(gè)雙射映射.

在數(shù)學(xué)中,連續(xù)是函數(shù)的一種屬性.直觀上來(lái)說(shuō),連續(xù)的函數(shù)就是當(dāng)輸入值的變化足夠小的時(shí)候,輸出的變化也會(huì)隨之足夠小的函數(shù).如果輸入值的某種微小的變化會(huì)產(chǎn)生輸出值的一個(gè)突然的跳躍甚至無(wú)法定義,則這個(gè)函數(shù)被稱為是不連續(xù)的函數(shù)(或者說(shuō)具有不連續(xù)性).

數(shù)學(xué)高中知識(shí)點(diǎn)總結(jié)文科篇十五

等比數(shù)列:如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)常數(shù),這個(gè)數(shù)列就叫做等比數(shù)列。這個(gè)常數(shù)叫做等比數(shù)列的公比,公比通常用字母q表示(q≠0)。

1:等比數(shù)列通項(xiàng)公式:an=a1_q^(n-1);推廣式:an=am·q^(n-m);

2:等比數(shù)列求和公式:等比求和:sn=a1+a2+a3+.......+an

①當(dāng)q≠1時(shí),sn=a1(1-q^n)/(1-q)或sn=(a1-an×q)÷(1-q)

②當(dāng)q=1時(shí),sn=n×a1(q=1)記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

3:等比中項(xiàng):aq·ap=ar^2,ar則為ap,aq等比中項(xiàng)。

4:性質(zhì):

①若m、n、p、q∈n,且m+n=p+q,則am·an=ap_aq;

②在等比數(shù)列中,依次每k項(xiàng)之和仍成等比數(shù)列.

例題:設(shè)ak,al,am,an是等比數(shù)列中的第k、l、m、n項(xiàng),若k+l=m+n,求證:ak_al=am_an

證明:設(shè)等比數(shù)列的首項(xiàng)為a1,公比為q,則ak=a1·q^(k-1),al=a1·q^(l-1),am=a1·q^(m-1),an=a1·q^(n-1)

所以:ak_al=a^2_q^(k+l-2),am_an=a^2_q(m+n-2),故:ak_al=am_an

說(shuō)明:這個(gè)例題是等比數(shù)列的一個(gè)重要性質(zhì),它在解題中常常會(huì)用到。它說(shuō)明等比數(shù)列中距離兩端(首末兩項(xiàng))距離等遠(yuǎn)的兩項(xiàng)的乘積等于首末兩項(xiàng)的乘積,即:a(1+k)·a(n-k)=a1·an

對(duì)于等差數(shù)列,同樣有:在等差數(shù)列中,距離兩端等這的兩項(xiàng)之和等于首末兩項(xiàng)之和。即:a(1+k)+a(n-k)=a1+an

數(shù)學(xué)高中知識(shí)點(diǎn)總結(jié)文科篇十六

如果在a與b中間插入一個(gè)數(shù)g,使a,g,b成等比數(shù)列,那么g叫做a與b的等比中項(xiàng)。

有關(guān)系:

注:兩個(gè)非零同號(hào)的實(shí)數(shù)的等比中項(xiàng)有兩個(gè),它們互為相反數(shù),所以g2=ab是a,g,b三數(shù)成等比數(shù)列的必要不充分條件。

an=a1_q’(n-1)(其中首項(xiàng)是a1,公比是q)

an=sn-s(n-1)(n≥2)

前n項(xiàng)和

當(dāng)q≠1時(shí),等比數(shù)列的前n項(xiàng)和的公式為

sn=a1(1-q’n)/(1-q)=(a1-a1_q’n)/(1-q)(q≠1)

當(dāng)q=1時(shí),等比數(shù)列的前n項(xiàng)和的公式為

sn=na1

an=a1=s1(n=1)

an=sn-s(n-1)(n≥2)

(1)若m、n、p、q∈n_,且m+n=p+q,則am·an=ap·aq;

(2)在等比數(shù)列中,依次每k項(xiàng)之和仍成等比數(shù)列。

(3)從等比數(shù)列的定義、通項(xiàng)公式、前n項(xiàng)和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

(4)等比中項(xiàng):q、r、p成等比數(shù)列,則aq·ap=ar2,ar則為ap,aq等比中項(xiàng)。

記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

另外,一個(gè)各項(xiàng)均為正數(shù)的等比數(shù)列各項(xiàng)取同底指數(shù)冪后構(gòu)成一個(gè)等差數(shù)列;反之,以任一個(gè)正數(shù)c為底,用一個(gè)等差數(shù)列的各項(xiàng)做指數(shù)構(gòu)造冪can,則是等比數(shù)列。在這個(gè)意義下,我們說(shuō):一個(gè)正項(xiàng)等比數(shù)列與等差數(shù)列是“同構(gòu)”的。

(5)等比數(shù)列前n項(xiàng)之和sn=a1(1-q’n)/(1-q)

(6)任意兩項(xiàng)am,an的關(guān)系為an=am·q’(n-m)

(7)在等比數(shù)列中,首項(xiàng)a1與公比q都不為零。

注意:上述公式中a’n表示a的n次方。

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔
你可能感興趣的文章
a.付費(fèi)復(fù)制
付費(fèi)獲得該文章復(fù)制權(quán)限
特價(jià):5.99元 10元
微信掃碼支付
已付款請(qǐng)點(diǎn)這里
b.包月復(fù)制
付費(fèi)后30天內(nèi)不限量復(fù)制
特價(jià):9.99元 10元
微信掃碼支付
已付款請(qǐng)點(diǎn)這里 聯(lián)系客服