時間流逝得如此之快,我們的工作又邁入新的階段,請一起努力,寫一份計劃吧。寫計劃的時候需要注意什么呢?有哪些格式需要注意呢?以下是小編為大家收集的計劃范文,僅供參考,大家一起來看看吧。
高二數學教學工作計劃個人篇一
準確把握《教學大綱》和《考試大綱》的各項基本要求,立足于基礎知識和基本技能的教學,注重滲透數學思想和方法。立足學生的實際,不斷研究數學教學,改進教法,指導學法,奠定立足社會所需要的必備的基礎知識、基本技能和基本能力,著力于培養(yǎng)學生的創(chuàng)新精神,運用數學的意識和能力,奠定他們終身學習的基礎。
1、基本情況:高二10個理科班,4個文科班,每個班的學生對數學學習各不相同。其中,1—6班為實驗班,大部分人,基礎較好,數學學習興趣較為濃厚。還有些學生對自己學習數學的信心不足,學習積極性和主動性不夠,大部分學生學習上只滿足完成老師所布置的任務,對于靈活運用知識分析問題、解決問題的能力還不夠強,不能舉一反三進一步挖深問題,在選例題時盡量選中等難度題目,以適應大多數學生的適應能力。
針對以上問題的出現,在本學期擬訂以下目標和措施。其具體目標如下:
1、獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,了解概念、結論等產生的背景、應用,體會其中所蘊涵的數學思想和方法,以及它們在后續(xù)學習中的作用。通過不同形式的自主學習、探究活動,體驗數學發(fā)現和創(chuàng)造的歷程。
2、提高空間想像、抽象概括、推理論證、運算求解、數據處理等基本能力。
3、提高數學的提出、分析和解決問題的能力,數學表達和交流的能力,發(fā)展獨立獲取數學知識的能力。
4、提高學習數學的興趣,樹立學好數學的信心,形成鍥而不舍的鉆研精神和科學態(tài)度。
1、選取與內容密切相關的,典型的,豐富的和學生熟悉的素材,用生動活潑的語言,創(chuàng)設能夠體現數學的概念和結論,數學的思想和方法,以及數學應用的學習情境,使學生產生對數學的親切感,以達到培養(yǎng)其興趣的目的。
2、通過“觀察”,“思考”,“探究”等欄目,引發(fā)學生的思考和探索活動,切實改進學生的學習方式。
3、在教學中強調類比,推廣,特殊化,化歸等數學思想方法,盡可能養(yǎng)成其邏輯思維的習慣。
1、抓好課堂教學,提高教學效益。 課堂教學是教學的主要環(huán)節(jié),因此,抓好課堂教學是教學之根本,是提高數學成績的主要途徑。
①認真落實,搞好集體備課。每周至少進行一次集體備課,星期一的上午升旗后至第二節(jié)課結束。每位老師都要提前一周進行單元式的備課,集體備課時,由兩名老師作主要發(fā)言人,對下一周的教材內容作分析,然后大家研究討論其中的重點、難點、教學方法等。
②加大課堂教改力度,培養(yǎng)學生的自主學習能力。最有效的學習是自主學習,因此,課堂教學要大力培養(yǎng)學生自主探究的精神,逐步形成知識體系,提高能力。同時要養(yǎng)成學生良好的學習習慣,不斷提高學生的數學素養(yǎng),從而提高數學素養(yǎng),并大面積提高數學成績。
2、加強課外輔導,提高競爭能力。 課外輔導是課堂的有力補充,是提高數學成績的有力手段。
①加強學習方法的指導,全方面提高他們的數學能力,特別是自主能力,并通過強化訓練,不斷提高解題能力,使他們的數學成績更上一層樓。
②加強對雙差生的輔導。雙差生是一個班級教學成敗的關鍵,因此,我將下大力氣輔導雙差生,通過個別或集體的方法進行耐性教學,從而使他們的紀律以及數學成績有一定的進步。
3、搞好單元考試、階段性考試的分析。學生只有通過不斷的練習才能提高成績,單元考試、階段性考試是最好的練習,每次都要做好分析,并指導學生糾錯。在分析過程中要遵循自主的思維習慣,使學生真正理解。
本學期授課時間約為20周,本學期的教學任務:
第一學段:數學必修3;
第二學段:理科2-1。另完成選修4—5,和選修4—4的教學任務,保證完成教學任務。
高二數學教學工作計劃個人篇二
二年級五班有73名學生,
八班有70名學生。這兩個班是高二理科班的第三個班。大多數學生基礎薄弱,學習興趣低,甚至很多學生害怕數學。但是他們還是有一顆學好數學的心,也想融入到日新月異的數學世界中去,甚至想在每一次考試中領先。有鑒于此,通過正確引導,教學中適當調整難度,降低起點,一小步一小步,就能取得好成績。
1、加強自學。
(1)加強教材的學習。課本是一切教學的起點,也是考試的歸宿。任何一個數學知識點都會從課本上找到類型題或者類似的題或者它們的影子。教學知識的全面性和系統性直接決定于教材能否被透徹理解和專題研究。也決定了學習課本的必要性。
(2)他山之石可以攻玉。由于生活環(huán)境、面對的對象、自身知識的局限等原因,自己的視野和起點有限,思考和解決問題的廣度和深度也有限。所以多讀一些教學參考書,吸收別人的經驗,取長補短,對于增強教學的針對性和刺激性大有裨益。
強化課程改革意識。新課程改革全面展開,其精神和思想具有獨特的時代性、前瞻性和科學性。因此,加強新課程改革知識的學習,理解新課程改革理念,增強新課程改革意識,是時代和發(fā)展的需要。因此,要積極參與新課改的培訓,把握新課改的精髓,并應用于實踐。這樣才能讓我們的知識代謝。
認真參與小組備課。珍惜每周一次的集體備課,充分利用這次集體備課的機會,向同齡人學習自己的不足或不擅長,積極落實小組內的各項安排,落實課時要求。
增強聽課意識。根據學校的要求,積極參與新課改年級的課堂聽力活動,聽取老師的意見,發(fā)現亮點,記錄亮點,積累亮點,點亮亮點。
2、把握課堂教學主戰(zhàn)場,激發(fā)師生學習數學的積極性。
(1)加強新課情景的創(chuàng)設,激發(fā)學生的學習熱情。每一節(jié)新課的開發(fā)都有其現實意義、價值和趣味性。充分挖掘這些知識可以起到很好的啟動作用。
(2)選擇一些例子。對于能學好的同學,就不說了;對于經過討論能夠解決的學生,給予適當的指導;對于在老師指導下完成的學生,慢慢地、仔細地講,努力讓每個學生都聽得懂,學得好。我不說超出學生承受范圍的話。
課后認真安排作業(yè)。
課后作業(yè)是課堂教學的反饋。作業(yè)質量能在一定程度上反映教學效果。所以作業(yè)安排需要科學,分層,多樣化,知識點要全面。
3、做好課后輔導。
(1)充分利用晚自習給每個學生耐心、細致、全面的指導。讓學生積累的問題得到徹底解決。
利用自習課的時間,找到需要幫助的同學進行輔導。如果你不會背公式,掌握公式,交作業(yè),就會被勒令補課。
4、做好作業(yè)和考試反饋。
現在學生的數學答案順序不清,邏輯混亂,因果顛倒,這不是扎實的基礎,也是思維上的缺陷。因此,在現階段,有助于培養(yǎng)學生良好的數學思維,避免高考失分和未來生活的凌亂。
5、培養(yǎng)學生對數學的興趣,普及數學價值規(guī)律的應用。
興趣是有的,老師。數學難,很煩。哪里難,哪里煩?找到原因,對癥下藥,通過課堂移植有趣的中外數學知識,讓學生認識到數學的價值,通過多媒體降低數學思維的難度,都是提高學生興趣的途徑
高二數學教學工作計劃個人篇三
1班共有學生75人,2班共有學生72人。2班學習數學的氣氛較濃,但由于高一函數部分基礎特別差,對高二乃至整個高中的數學學習有很大的影響,數學成績尖子生多或少,但若能雜實復習好函數部分,加上學生又很努力,將來前途無量。若能好好的引導,進一步培養(yǎng)他們的學習興趣。
(一)情意目標
(1)提供生活背景,使學生體驗到不等式、直線、圓、圓錐曲線就在身邊,培養(yǎng)學數學用數學的意識。
(2)通過分析問題的方法的教學、通過不等式的一題多解、多題一解、不等式的一題多證,培養(yǎng)學生的學習的興趣。
(3)在探究不等式的性質、圓錐曲線的性質,體驗獲得數學規(guī)律的艱辛和樂趣,在分組研究合作學習中學會交流、相互評價,提高學生的合作意識
(4)基于情意目標,調控教學流程,堅定學習信念和學習信心。
(5)還時空給學生、還課堂給學生、還探索和發(fā)現權給學生,給予學生自主探索與合作交流的機會,在發(fā)展他們思維能力的同時,發(fā)展他們的數學情感、學好數學的自信心和追求數學的科學精神。
(6)讓學生體驗發(fā)現挫折矛盾頓悟新的發(fā)現這一科學發(fā)現歷程的幻妙多姿
(二)能力要求
1、培養(yǎng)學生記憶能力。
(1)在對不等式的性質、平均不等式及思維方法與邏輯模式的學習中,進一步培養(yǎng)記憶能力。做到記憶準確、持久,用時再現得迅速、正確。
(2)通過定義、命題的總體結構教學,揭示其本質特點和相互關系,培養(yǎng)對數學本質問題的背景事實及具體數據的記憶。
(3)通過揭示解析幾何有關概念、公式和圖形直觀值見的對應關系,培養(yǎng)記憶能力。
2、培養(yǎng)學生的運算能力。
(1)通過解不等式及不等式組的訓練,培養(yǎng)學生的運算能力。
(2)加強對概念、公式、法則的明確性和靈活性的教學,培養(yǎng)學生的運算能力。
(3)通過解析法的教學,提高學生是運算過程具有明晰性、合理性、簡捷性能力。
(4)通過一題多解、一題多變培養(yǎng)正確、迅速與合理、靈活的運算能力,促使知識間的滲透和遷移。
(5)利用數形結合,另辟蹊徑,提高學生運算能力。
3、培養(yǎng)學生的思維能力。
(1)通過含參不等式的求解,培養(yǎng)學生思維的周密性及思維的邏輯性。
(2)通過解析幾何與不等式的一題多解、多題一解、通過不等式的一題多證,培養(yǎng)思維的靈活性和敏捷性,發(fā)展發(fā)散思維能力。
(3)通過不等式引伸、推廣,培養(yǎng)學生的創(chuàng)造性思維。
(4)加強知識的橫向聯系,培養(yǎng)學生的數形結合的能力。
(5)通過解析幾何的概念教學,培養(yǎng)學生的正向思維與逆向思維的能力。
(6)通過典型例題不同思路的分析,培養(yǎng)思維的靈活性,是學生掌握轉化思想方法。
4、培養(yǎng)學生的觀察能力。
(1)在比較鑒別中,提高觀察的準確性和完整性。
(2)通過對個性特征的分析研究,提高觀察的深刻性。
(三)知識要求
1、掌握不等式的概念、性質及證明不等式的方法,不等式的解法;
2、通過直線與圓的教學,使學生了解解析幾何的基本思想,掌握直線方程的幾種形式及位置關系,掌握簡單線性規(guī)劃問題,掌握曲線方程、圓的概念。
3、掌握橢圓、雙曲線、拋物線的定義、方程、圖形及性質。
1、不等式的主要內容是:不等式性質、不等式證明、不等式解法。不等式性質是基礎,不等式證明是在其基礎上進行的;不等式的解法是在這一基礎上、依據不等式的性及同解變形來完成的。不等式在整個高中數學中是一個重要的工具,是培養(yǎng)運算能力、邏輯思維能力的強有力載體。
2、直線是最簡單的幾圖形,是學習圓錐曲線、導數和微分等知識的的基礎。,是直線方程的一個直接應用。主要內容有:直線方程的幾種形式,線性規(guī)劃的初步知識,兩直線的位置關系,圓的方程;斜率是最重要的概念,斜率公式是最重要的公式,直線與圓是數形結合解析幾何相互為用思想的載體。
3、圓錐曲線包括橢圓、雙曲線、拋物線的定義,標準方程,簡單幾何性質,以及它們在實際中的一些運用。橢圓、雙曲線、拋物線分別是滿足某些條件的點的軌跡,由這些條件可以求出它們的方程,并通過分析標準方程研究它們的性質。
(一)重點
1、不等式的證明、解法。
2、直線的斜率公式,直線方程的幾種形式,兩直線的位置關系,圓的方程。
3、橢圓、雙曲線、拋物線的定義,標準方程,簡單幾何性質。
(二)難點
1、含絕對值不等式的解法,不等式的`證明。
2、到角公式,點到直線距離公式的推導,簡單線性規(guī)劃的問題的解法。
3、用坐標法研究幾何問題,求曲線方程的一般方法。
1、教學中要傳授知識與培育能力相結合,充分調動學生學習的主動性,培育學生的概括能力,是學生掌握數學基本方法、基本技能。
2、堅持與高三聯系,切實面向高考,以五大數學思想為主線,有目的、有計劃、有重點,避免面面俱到,減輕學生的學習負擔。
3、加強教育教學研究,堅持學生主體性原則,堅持循序漸進原則,堅持啟發(fā)性原則。研究并采用以發(fā)現式教學模式為主的教學方法,全面提高教學質量。
4、堅持學法研討,加強個別輔導(差生與優(yōu)生),提高全體學生的整體數學水平,培育尖
子學生。5、加強數學研究課的教學研究指導,培養(yǎng)學識的動手能力。
6、積極參加與組織集體備課,共同研究,努力提高授課質量
7、堅持向同行聽課,取人所長,補己之短。相互研究,共同進步。
本學期共81課時
1、不等式18課時
2、直線與圓的方程25課時
3、圓錐曲線20課時
高二數學教學工作計劃個人篇四
1、知識與技能
(1)了解算法的含義,體會算法的思想;
(2)能夠用自然語言敘述算法;
(3)掌握正確的算法應滿足的要求;
(4)會寫出解線性方程(組)的算法;
(5)會寫出一個求有限整數序列中的最大值的算法.
2、過程與方法
(1)通過求解二元一次方程組,體會解方程的一般性步驟,從而得到一個解二元一次方程組的步驟,這些步驟就是算法,不同的問題有不同的算法;
(2)同一個問題也可能有多個算法,能模仿求解二元一次方程組的步驟,寫出一個求有限整數序列中的最大值的算法.
3、情感與價值觀
通過本節(jié)的學習,對計算機的算法語言有一個基本的了解;明確算法的要求,認識到計算機是人類征服自然的一個有力工具,進一步提高探索、認識世界的能力.
重點:算法的含義,解二元一次方程組、判斷一個數為質數和利用“二分法”求方程近似解的算法設計.
難點:把自然語言轉化為算法語言.
(一)創(chuàng)設情景、導入課題
問題1:把大象放入冰箱分幾步?
第一步:把冰箱門打開;
第二步:把大象放進冰箱;
第三步:把冰箱門關上.
問題2:指出在家中燒開水的過程分幾步?(略)
問題3:如何求一元二次方程 的解?
第一步:計算 ;
第二步:如果 ,
如果 ,方程無解
第三步:下結論.輸出方程的根或無解的信息.
注意:在以上三個問題的求解過程中,老師要緊扣算法定義,帶領學生總結,反復強調,使學生體會以下幾點:
①有窮性:步驟是有限的,它應在有限步操作之后停止,而不能是無限地執(zhí)行下去。
②確定性:每一步應該是確定的并且能有效地執(zhí)行且得到確定的結果,而不應當是模棱兩可的。
③邏輯性:從初始步驟開始,分為若干個明確的步驟,前一步是后一步的前提,只有執(zhí)行完前一步才能進行下一步,并且每一步都準確無誤,才能完成問題。
④不唯一性:求解某一個問題的算法不一定只有唯一的一個,可以有不同的算法。
⑤普遍性:很多具體的問題,都可以設計合理的算法去解決。
注:其他還有輸入性、輸出性等特征,結論不固定.
提問:算法是如何定義?
(二)師生互動、講解新課
x-2y=-1 ①
回顧(課本p2內容): 寫出解二元一次方程組 2x y=1 ② 的算法.
解:第一步,②×2 ①,得5x=1;③
第二步,解③,得x= ;
第三步,②-①×2得5y=3;④
第四步,解④ ,得y= ;
第五步,得到方程組的解為 x= ;y= 。
思考1:你能寫出求解一般的二元一次方程組的步驟嗎?
上題的算法是由加減消元法求解的,這個算法也適合一般的二元一次方程組的解法
對于一般的二元一次方程組 可以寫出類似的求解步驟:
第一步,①×b2-②×b1,得 ;③
第二步,解③,得 .
第三步,②×a1-①×a2,得 ;④
第四步,解④,得 ;
第五步,得到方程組的解為
(高斯消去法)
思考2:根據上述分析,用加減消元法解二元一次方程組,可以分為五個步驟進行,這五個步驟就構成了解二元一次方程組的一個“算法”.我們再根據這一算法編制計算機程序,就可以讓計算機來解二元一次方程組.那么解二元一次方程組的算法包括哪些內容?
思考3:一般地,算法是由按照一定規(guī)則解決某一類問題的基本步驟組成的.
你認為:
(1)這些步驟的個數是有限的還是無限的?
(2)每個步驟是否有明確的計算任務?
總結:在數學中,按照一定規(guī)則解決某一類問題的明確和有限的步驟稱為算法.
算法(algorithm)一詞出現于12世紀,源于算術(algorism),即算術方法.指的是用阿拉伯數字進行算術運算的過程.在數學中,算法通常是指按照一定的規(guī)則解決某一類問題的明確的和有限的步驟.現在,算法通??梢跃幊捎嬎銠C程序,讓計算機執(zhí)行并解決問題.后來,人們把它推廣到一般,把進行某一工作的方法和步驟稱為算法.
廣義地說,算法就是做某一件事的步驟或程序.菜譜是做菜肴的算法,洗衣機的使用說明書是操作洗衣機的算
法,歌譜是一首歌曲的算法.在數學中,主要研究計算機能實現的算法,即按照某種機械程序步驟一定可以得到結果的解決問題的程序.比如解方程的算法、函數求值的算法、作圖的算法,等等.
(三)例題剖析,鞏固提高
例1(課本p3例1):如果讓計算機判斷7是否為質數,如何設計算法步驟?
算法:
第一步,用2除7,得到余數1,所以2不能整除7.
第二步,用3除7,得到余數1,所以3不能整除7.
第三步,用4除7,得到余數3,所以4不能整除7.
第四步,用5除7,得到余數2,所以5不能整除7.
第五步,用6除7,得到余數1,所以6不能整除7.
因此,7是質數.
課堂練習1:
整數89是否為質數?如果讓計算機判斷89是否為質數,按照上述算法需要設計多少個步驟?
思考4:用2~88逐一去除89求余數,需要87個步驟,這些步驟基本是重復操作,我們可以按下面的思路改進這個算法,減少算法的步驟.
(1)用i表示2~88中的任意一個整數,并從2開始取數;
(2)用i除89,得到余數r. 若r=0,則89不是質數;若r≠0,將i用i 1替代,再執(zhí)行同樣的操作;
(3)這個操作一直進行到i取88為止.
你能按照這個思路,設計一個“判斷89是否為質數”的算法步驟嗎?
算法設計:
第一步,令i=2;
第二步,用i除89,得到余數r;
第三步,若r=0,則89不是質數,結束算法;若r≠0,將i用i 1替代;
第四步,判斷“i>88”是否成立?若是,則89是質
數,結束算法;否則,返回第二步.
探究:一般地,判斷一個大于2的整數是否為質數的算法步驟如何設計?
在中央電視臺幸運52節(jié)目中,有一個猜商品價格的環(huán)節(jié),竟猜者如在規(guī)定的時間內大體猜出某種商品的價格,就可獲得該件商品.現有一商品,價格在0~8000元之間,采取怎樣的策略才能在較短的時間內說出比較接近的答案呢?
例2、一群小兔一群雞,兩群合到一群里,要數腿共48,要數腦袋整17,多少只小兔多少只雞?
算法1:s1 首先計算沒有小兔時,小雞的數為:17只,腿的總數為34條。
s2 再確定每多一只小兔、減少一只小雞增加的腿數2條。
s3 再根據缺的腿的條數確定小兔的數量: (48-34)/2=7只
s4 最后確定小雞的數量:17-7=10只.
算法2:s1 首先設 只小雞, 只小兔。
s2 再列方程組為:
s3 解方程組得:
s4 指出小雞10只,小兔7只。
算法3:s1 首先設 只小雞,則有 只小兔
s2 列方程
s3 解方程得 ,則
s4 指出小雞10只,小兔7只.
算法4:s1 “請一名馴獸師”所有小雞抬一條腿,所有小兔抬兩條腿
s2 有小兔 只
s3 有小雞 只
s4 指出小雞10只,小兔7只.
算法5:s1 有小兔 只
s2 有小雞 只
二分法:
對于區(qū)間[a,b ]上連續(xù)不斷,且f(a)f(b)<0的函數y=f(x),通過不斷地把函數f(x)的零點所在的區(qū)間一分為二,使區(qū)間的兩個端點逐步逼近零點,而得到零點近似值的方法叫做二分法.
例3(課本p4例2):寫
出用“二分法”求方程 的近似解的算法.
算法分析:
令f(x)= ,則方程 的解就是函數f(x)的零點.
第一步,令f(x)= ,給定精確度d.
第二步,確定區(qū)間[a,b],滿足f(a)·f(b)<0.
第三步,取區(qū)間中點 .
第四步,若f(a)·f(m)<0,則含零點的區(qū)間為[a,m],否則,含零點的區(qū)間為[m,b].
將新得到的含零點的區(qū)間仍記為[a,b];
第五步,判斷[a,b]的長度是否小于d或f(m)是否等于0.若是,則m是方程的近似解;否則,返回第三步.
(四)課堂小結,鞏固反思
1、算法的主要特點:
(1)有限性:一個算法在執(zhí)行有限步后必須結束;
(2)確切性:算法的每一個步驟和次序必須是確定的;
(3)輸入:一個算法有0個或多個輸入,以刻劃運算對象的初始條件.所謂0個輸入是指算法本身定出了初始條件.
(4)輸出:一個算法有1個或多個輸出,以反映對輸入數據加工后的結果.沒有輸出的算法是毫無意義的.
2、計算機解決任何問題都要依賴算法,算法是建立在解法基礎上的操作過程,算法不一定要有運算結果.設計一個解決某類問題的算法的核心內容是將解決問題的過程分解為若干個明確的步驟,即算法,它沒有一個固定的模式,但有以下幾個基本要求:
(1)符合運算規(guī)則,計算機能操作;
(2)每個步驟都有一個明確的計算任務;
(3)對重復操作步驟作返回處理;
(4)步驟個數盡可能少;
(5)每個步驟的語言描述要準確、簡明.
高二數學教學工作計劃個人篇五
本學期我任教05財會(3)班數學,所選的教材是人民教育出版社職業(yè)教育中心編著的《數學(基礎版)》。該教材是在原有職業(yè)高中數學教材的基礎上,依據國家教育部新制定的《中等職業(yè)學校數學教學大綱(試行)》重新編寫的,具有以下特點:
1.注重基礎:
“大綱”對傳統的初等數學教育內容進行了精選,把理論上、方法上以及代生產與生活中得到廣泛應用的知識作為各專業(yè)必學的基本內容。根據“大綱”要求,把函數與幾何,以及研究函數與幾何的方法作為教材的核心內容。
2.降低知識起點
多數中職學生對學過的數學知識需要復習與提高,才能順利進入中職階段的數學學習。這套數學教材編寫從學生的實際出發(fā),提高中職學生的數學素質,使多數學生能完成“大綱”中規(guī)定的教學要求,以保證中職學生能達到高中階段的基本數學水準。
3.增加較大的使用彈性
考慮中等職業(yè)學校專業(yè)的多樣性,各對數學能力的要求也不相同,教學要求給出了較大的選擇范圍,增加了教學的彈性。教材中給出了三個層次:一是必學的內容分兩種教學要求(在教參中指出);二是教材中配備一些難度較大的習題,供學有余力的學生去做,培養(yǎng)這些學生的解題能力;三是編寫了選學內容,選學內容主
主要是深化基本內容所學知識和應用基本內容解決實際問題的能力。
4.注重數學應用意識的培養(yǎng)
每章專設應用一節(jié),列舉數學在生活實際、現代科學和生產中應用的例子,培養(yǎng)學生用數學解決實際問題的意識和能力。
5.注重培養(yǎng)學生使用計算機工具的能力
在“大綱”中,要求培養(yǎng)學生使用基本計算工具的恩能夠里。這就要求學生掌握使用計數器的技能,所以在新教材中增加了用計數器做的練習題。有條件的學生還可以培養(yǎng)學生使用計算機技術。
本學期使用的是第二冊的教材,內容包括:平面解析幾何,立體幾何,排列、組合與二項式定理,概率與統計初步。
每章編寫結構:引言,正文(大節(jié)、小節(jié)、聯系、習題),復習問題和復習參考題,閱讀材料(數學文化)等。除個別標注星號的選學內容外,都是必學內容。
05財會(3)班是我剛接手的班級,因而對學生的情況并不是非常熟悉。從總體上看,該班的學習中堅力量主要在一小部分的女生,其他學生學習積極性較差。在要學習的學生當中,普遍表現出底子薄、基礎差的特點,對以往知識的缺漏非常多。因而在教學過程當中,及時補遺、查漏補缺尤為重要。知識引入環(huán)節(jié)我設置舊知識補遺,先回顧新
課所涉及到的舊知識點;對學生的要求以能處理簡單的操作題為主。另外,舒適的環(huán)境對學生的情緒也有挺大的影響,因而在教學過程中應滲入環(huán)境教育,培養(yǎng)學生的環(huán)境保護意識。
略
高二數學教學工作計劃個人篇六
為進一步提高作為未來公民所必要的數學素養(yǎng),以滿足個人發(fā)展與社會進步的需要。具體目標如下:
1.獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,了解概念、結論等產生的背景、應用,體會其中所蘊涵的數學思想和方法,以及它們在后續(xù)學習中的作用。通過不同形式的自主學習、探究活動,體驗數學發(fā)現和創(chuàng)造的歷程。
2.提高空間想像、抽象概括、推理論證、運算求解、數據處理等基本能力。
3.提高數學地提出、分析和解決問題(包括簡單的實際問題)的能力,數學表達和交流的能力,發(fā)展獨立獲取數學知識的能力。
4.發(fā)展數學應用意識和創(chuàng)新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出判斷。
5.提高學習數學的興趣,樹立學好數學的信心,形成鍥而不舍的鉆研精神和科學態(tài)度。
6.具有一定的數學視野,逐步認識數學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
我們所使用的教材是人教版《普通高中課程標準實驗教科書數學(a版)》,它在堅持我國數學教育優(yōu)良傳統的前提下,認真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關系,體現基礎性,時代性,典型性和可接受性等到,具有如下特點:
1.親和力:以生動活潑的呈現方式,激發(fā)興趣和美感,引發(fā)學習激情。
2.問題性:以恰時恰點的問題引導數學活動,培養(yǎng)問題意識,孕育創(chuàng)新精神。
3.科學性與思想性:通過不同數學內容的聯系與啟發(fā),強調類比,推廣,特殊化,化歸等思想方法的運用,學習數學地思考問題的方式,提高數學思維能力,培育理性精神。
4.時代性與應用性:以具有時代性和現實感的素材創(chuàng)設情境,加強數學活動,發(fā)展應用意識。
1.選取與內容密切相關的,典型的,豐富的和學生熟悉的素材,用生動活潑的語言,創(chuàng)設能夠體現數學的概念和結論,數學的思想和方法,以及數學應用的學習情境,使學生產生對數學的親切感,引發(fā)學生看個究竟的沖動,以達到培養(yǎng)其興趣的目的。
2.通過觀察,思考,探究等欄目,引發(fā)學生的思考和探索活動,切實改進學生的學習方式。
3.在教學中強調類比,推廣,特殊化,化歸等數學思想方法,盡可能養(yǎng)成其邏輯思維的習慣。
1、基本情況:高二(1) 班共50 人,男生36 人,女生14 人;本班相對而言,數學尖子約13 人,中上等生約23 人,中等生約6 人,中下生約6人,后進生約 2 人。
高二(2) 班共49 人,男生37 人,女生12 人;本班相對而言,數學尖子約0人,中上等生約7人,中等生約8人,中下生約22人,后進生約12人。
2、(1)班學生學習情況良好,但學生自覺性差,自我控制能力弱,因此在教學中需時時提醒學生,培養(yǎng)其自覺性。班級存在的最大問題是計算能力太差,學生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學中,重點在于培養(yǎng)學生的計算能力,同時要進一步提高其思維能力。同時,由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時適機補充一些內容。因此時間上可能仍然吃緊。同時,其底子薄弱,因此在教學時只能注重基礎再基礎,爭取每一堂課落實一個知識點,掌握一個知識點。
1、了解合情推理的含義,能利用歸納和類比等進行簡單的推理,了解合情推理在數學發(fā)現中的作用;了解演繹推理的重要性,掌握演繹推理的基本模式,并能運用它們進行一些簡單推理;了解合情推理和演繹推理之間的聯系和差異。
2、了解直接證明的兩種基本方法:分析法和綜合法;了解分析法和綜合法的思考過程、特點;了解間接證明的一種基本方法反證法;了解反證法的思考過程、特點。
3、(理)了解數學歸納法的原理,能用數學歸納法證明一些簡單的數學命題。
4、理解復數相等的充要條件;了解復數的代數表示法及其幾何意義;會進行復數代數形式的四則運算;了解復數代數形式的加、減運算的幾何意義。
5、(理)理解分類加法計數原理和分類乘法計數原理;會用分類加法計數原理或分步乘法計數原理分析和解決一些簡單的實際問題;理解排列、組合的概念;能利用計數原理推導排列數公式、組合數公式,能解決簡單的實際問題;能用計數原理證明二項式定理,會用二項式定理解決與二項展開式有關的簡單問題。
6、(理)理解取有限個值的離散型隨機變量及其分布列的概念,了解分布列對于刻畫隨機現象的重要性;理解超幾何分布及其導出過程,并能進行簡單的應用;了解條件概率和兩個事件相互獨立的概念,理解n次獨立重復試驗的模型及二項分布,并能解決一些簡單的實際問題;理解取有限個值的離散型隨機變量均值、方差的概念,能計算簡單離散型隨機變量的均值、方差,并能解決一些實際問題;利用實際問題的直方圖,了解正態(tài)分布曲線的特點及曲線所表示的意義。
7、了解下列一些常見的統計方法,并能應用這些方法解決一些實際問題:了解獨立性檢驗(只要求22列聯表)的基本思想、方法及其簡單應用;了解假設檢驗的基本思想、方法及其簡單應用;了解聚類分析的基本思想、方法及其簡單應用;了解回歸的基本思想、方法及其簡單應用。
9、了解程序框圖;了解工序流程圖(即統籌圖);能繪制簡單實際問題的流程圖,了解流程圖在解決實際問題中的作用;了解結構圖;會運用結構圖梳理已學過的知識、整理收集到的資料信息。
8、所有考生都學習選修4-4 坐標系與參數方程,理科考生還需學習選修4-5不等式選講這部分專題內容。
1、激發(fā)學生的學習興趣。由數學活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學生的學習信心,提高學習興趣,在主觀作用下上升和進步。
2、注意從實例出發(fā),從感性提高到理性;注意運用對比的方法,反復比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學生思考。
3、加強培養(yǎng)學生的邏輯思維能力就解決實際問題的能力,以及培養(yǎng)提高學生的自學能力,養(yǎng)成善于分析問題的習慣,進行辨證唯物主義教育。
4、抓住公式的推導和內在聯系;加強復習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的能力。
5、自始至終貫徹教學四環(huán)節(jié),針對不同的教材內容選擇不同教法。
6、重視數學應用意識及應用能力的培養(yǎng)。
高二數學教學工作計劃個人篇七
261班共有學生75人,268班共有學生72人。268班學習數學的氣氛較濃,但由于高一函數部分基礎特別差,對高二乃至整個高中的數學學習有很大的影響,數學成績尖子生多或少,但若能雜實復習好函數部分,加上學生又很努力,將來前途無量。若能好好的引導,進一步培養(yǎng)他們的學習興趣。
(一)情意目標
(1)通過分析問題的方法的教學、通過不等式的一題多解、多題一解、不等式的一題多證,培養(yǎng)學生的學習的興趣。
(2)提供生活背景,使學生體驗到不等式、直線、圓、圓錐曲線就在身邊,培養(yǎng)學數學用數學的意識。
(3)在探究不等式的性質、圓錐曲線的性質,體驗獲得數學規(guī)律的艱辛和樂趣,在分組研究合作學習中學會交流、相互評價,提高學生的合作意識 (4)基于情意目標,調控教學流程,堅定學習信念和學習信心。
(5)還時空給學生、還課堂給學生、還探索和發(fā)現權給學生,給予學生自主探索與合作交流的機會,在發(fā)展他們思維能力的同時,發(fā)展他們的數學情感、學好數學的自信心和追求數學的科學精神。
(6)讓學生體驗“發(fā)現——挫折——矛盾——頓悟——新的發(fā)現”這一科學發(fā)現歷程的幻妙多姿
(二)能力要求
1、培養(yǎng)學生記憶能力。
(1)在對不等式的性質、平均不等式及思維方法與邏輯模式的學習中,進一步培養(yǎng)記憶能力。做到記憶準確、持久,用時再現得迅速、正確。
(2)通過定義、命題的總體結構教學,揭示其本質特點和相互關系,培養(yǎng)對數學本質問題的背景事實及具體數據的記憶。 (3)通過揭示解析幾何有關概念、公式和圖形直觀值見的對應關系,培養(yǎng)記憶能力。
2、培養(yǎng)學生的運算能力。
(1)通過解不等式及不等式組的訓練,培養(yǎng)學生的運算能力。
(2)加強對概念、公式、法則的明確性和靈活性的教學,培養(yǎng)學生的運算能力。
(3)通過解析法的教學,提高學生是運算過程具有明晰性、合理性、簡捷性能力。
(4)通過一題多解、一題多變培養(yǎng)正確、迅速與合理、靈活的運算能力,促使知識間的滲透和遷移。
(5)利用數形結合,另辟蹊徑,提高學生運算能力。
3、培養(yǎng)學生的思維能力。
(1)通過含參不等式的求解,培養(yǎng)學生思維的周密性及思維的邏輯性。
(2)通過解析幾何與不等式的一題多解、多題一解、通過不等式的一題多證,培養(yǎng)思維的靈活性和敏捷性,發(fā)展發(fā)散思維能力。
(3)通過不等式引伸、推廣,培養(yǎng)學生的創(chuàng)造性思維。
(4)加強知識的橫向聯系,培養(yǎng)學生的數形結合的能力。
(5)通過解析幾何的概念教學,培養(yǎng)學生的正向思維與逆向思維的能力。
(6)通過典型例題不同思路的分析,培養(yǎng)思維的靈活性,是學生掌握轉化思想方法。
4、培養(yǎng)學生的觀察能力。
(1)在比較鑒別中,提高觀察的準確性和完整性。
(2)通過對個性特征的分析研究,提高觀察的深刻性。
(三)知識要求
1、掌握不等式的概念、性質及證明不等式的方法,不等式的解法;
2、通過直線與圓的教學,使學生了解解析幾何的基本思想,掌握直線方程的幾種形式及位置關系,掌握簡單線性規(guī)劃問題,掌握曲線方程、圓的概念。
3、掌握橢圓、雙曲線、拋物線的定義、方程、圖形及性質。
1、不等式的主要內容是:不等式性質、不等式證明、不等式解法。不等式性質是基礎,不等式證明是在其基礎上進行的;不等式的解法是在這一基礎上、依據不等式的性及同解變形來完成的。不等式在整個高中數學中是一個重要的工具,是培養(yǎng)運算能力、邏輯思維能力的強有力載體。
2、直線是最簡單的幾圖形,是學習圓錐曲線、導數和微分等知識的的基礎。,是直線方程的一個直接應用。主要內容有:直線方程的幾種形式,線性規(guī)劃的初步知識,兩直線的位置關系,圓的方程;斜率是最重要的概念,斜率公式是最重要的公式,直線與圓是數形結合解析幾何相互為用思想的載體。
3、圓錐曲線包括橢圓、雙曲線、拋物線的定義,標準方程,簡單幾何性質,以及它們在實際中的一些運用。橢圓、雙曲線、拋物線分別是滿足某些條件的點的軌跡,由這些條件可以求出它們的方程,并通過分析標準方程研究它們的性質。
(一)重點
1、不等式的證明、解法。
2、直線的斜率公式,直線方程的幾種形式,兩直線的位置關系,圓的方程。
3、橢圓、雙曲線、拋物線的定義,標準方程,簡單幾何性質。
(二)難點
1、含絕對值不等式的解法,不等式的證明。
2、到角公式,點到直線距離公式的推導,簡單線性規(guī)劃的問題的解法。
3、用坐標法研究幾何問題,求曲線方程的一般方法。
1、教學中要傳授知識與培育能力相結合,充分調動學生學習的主動性,培育學生的概括能力,是學生掌握數學基本方法、基本技能。
2、堅持與高三聯系,切實面向高考,以五大數學思想為主線,有目的、有計劃、有重點,避免面面俱到,減輕學生的學習負擔。
3、加強教育教學研究,堅持學生主體性原則,堅持循序漸進原則,堅持啟發(fā)性原則。研究并采用以“發(fā)現式教學模式”為主的教學方法,全面提高教學質量。
4、積極參加與組織集體備課,共同研究,努力提高授課質量
5、堅持向同行聽課,取人所長,補己之短。相互研究,共同進步。
6、堅持學法研討,加強個別輔導(差生與優(yōu)生),提高全體學生的整體數學水平,培育尖子學生。 7、加強數學研究課的教學研究指導,培養(yǎng)學識的動手能力。
日期 周次 節(jié)/周 教學內容(課時)
3月1日~3月7日 1 5 一元二次不等式(組)與簡單的線性規(guī)劃(5)
8日~14日 2 6 基本不等式(3)測試與講評(3)
15日~21日 3 6 命題及其關系(3),充分條件與必要條件(2),簡單邏輯連接詞(1)
22日~28日 簡單邏輯連接詞(2),全稱量詞與存在量詞(2),復習(2)
29日~4月5日 5 6 曲線與方程(2),橢圓(4)
6日~12日 6 6 橢圓(2),雙曲線(4)
13日~19日 7 6 ,拋物線(4),復習(2)
20日~26日 8 6 空間向量及其運算(5),立體幾何中的向量方法(1)
27日~5月2日 9 6 立體幾何中的向量方法(4),小結與復習(2)
3日~9日 10 6 期中考試
10日~16日 11 6 ,段考講評(2),變化率與導數(4)
17日~23日 12 6 導數的計算(2)導數在研究函數中的應用(4)
24日~30日 13 6 生活中的優(yōu)化問題舉例(4),定積分的概念(2)
6月1日~7日 14 6 定積分的概念(2),微積分基本定理(2)、定積分的簡單應用(2)
8日~14日 15 6 復習與測試(4),合情推理與演繹推理(2)
15日~21日 16 6 合情推理與演繹推理(2)、直接證明與間接證明(4)
22日~28日 17 6 數學歸納法(3),復習(3)
29日~7月4日 18 6 數系的擴充和復數的概念(3)、復數代數形式的四則運算(3)
5日~11日 19 6 期末復習(6)
12日~13日 20 6 期末考試
高二數學教學工作計劃個人篇八
118班66人,115班48人。118班學習數學的氛圍很濃。但由于高一的函數部分基礎較差,對高二乃至整個高中的數學學習影響很大。數學成績或多或少都有尖子生,但如果能認真復習函數部分,學生努力,前途無量。如果我們能很好地引導他們,進一步培養(yǎng)他們的學習興趣,…
(a)情感目標
(1)通過問題分析方法、一個不等式問題的多解、一個不等式問題的多解、一個不等式問題的多重證明的教學,培養(yǎng)學生的學習興趣。
(2)提供生活背景,讓學生體驗不等式、直線、圓以及圍繞它們的圓錐曲線,培養(yǎng)運用數學學習數學的意識。
(3)探究不等式和二次曲線的本質,體驗獲得數學規(guī)律的艱辛和樂趣,學會小組合作學習中的交流和相互評價,提高學生的合作意識
(4)以情感目標為基礎,規(guī)范教學過程,增強學習信念和信心。
(5)給學生時間和空間、班級和探索發(fā)現的權利,給學生自主探索和合作的機會,在發(fā)展思維能力的同時,培養(yǎng)學生的數學情感、學好數學的自信心和追求數學的科學精神。
(6)讓學生體驗“發(fā)現——個挫折3354個矛盾——個頓悟——個新發(fā)現”的科學發(fā)現過程的神奇
(2)能力要求
1.培養(yǎng)學生的記憶能力。
(1)在研究不等式的性質、平均不等式、思維方法和邏輯模式時,進一步培養(yǎng)記憶能力。讓記憶準確持久,快速正確的重現。
(2)通過對定義和命題的整體結構的教學,可以揭示它們的本質特征和相互關系,培養(yǎng)對數學本質問題的背景事實和具體數據的記憶。
(3)通過揭示解析幾何的概念、公式和視值之間的對應關系,培養(yǎng)記憶能力。
2.培養(yǎng)學生的計算能力。
(1)通過解不等式和不等式組的訓練,訓練學生的運算能力。
(2)加強概念、公式、規(guī)則的清晰性和靈活性的教學,培養(yǎng)學生的計算能力。(3)通過分析方法的教學,提高學生在操作過程中清晰、合理、簡單的能力。
(4)通過一題多解、一題多變,培養(yǎng)正確、快速、合理、靈活的計算能力,促進知識的滲透和傳遞。(5)利用數字和形狀的結合,尋找另一種提高學生計算能力的方法。
3.培養(yǎng)學生的思維能力。
(1)通過用參數求解不等式,培養(yǎng)學生的思維縝密和邏輯思維。
(2)通過多解、多解、多證分析幾何和不等式,培養(yǎng)思維的靈活性和敏捷性,發(fā)展發(fā)散思維能力。
(3)通過推廣和普及不等式培養(yǎng)學生的創(chuàng)造性思維。
(4)加強知識的橫向聯系,培養(yǎng)學生數形結合的能力。(5)通過解析幾何的概念教學,培養(yǎng)學生的正向思維和逆向思維能力。
(6)通過典型例題的不同思路分析,培養(yǎng)思維的靈活性是學生掌握思維轉化的途徑。
4.培養(yǎng)學生的觀察能力。
(1)在比較和鑒別中,提高觀察的準確性和完整性。(2)通過對人格特征的分析研究,提高觀察深度。(3)知識要求
1、掌握不等式的概念、性質和證明不等式的方法,不等式的解法;
2.通過直線和圓的教學,學生可以了解解析幾何的基本思想,掌握
(2)難點1。不等式的解包括絕對值和不等式的證明。2.角度公式、點到直線距離公式的推導及簡單線性規(guī)劃的求解。
3.用坐標法研究幾何問題,尋找曲線方程的一般方法。
五.教學措施
1.在教學中,要將傳授知識與培養(yǎng)能力相結合,充分調動學生的學習主動性,培養(yǎng)學生的概括能力,使學生掌握數學的基本方法和技能。
2.堅持與高三接觸,踏實面對高考,以數學五大思想為主線,有目的、有計劃、有重點,避免面面俱到,減輕學生學習負擔。
3.加強教育教學研究,堅持學生主體性原則,循序漸進,啟發(fā)性。研究并采用基于“發(fā)現教學模式”的教學方法,全面提高教學質量。
4.積極參與和組織集體備課,共同學習,努力提高教學質量
5.堅持聽同齡人講課,取長補短?;ハ鄬W習,共同進步。
6.堅持學習方法,加強個別輔導(差生和優(yōu)等生),提高全體學生的整體數學水平,培養(yǎng)尖子生。
7.加強數學研究性課程的教學和研究指導,培養(yǎng)知識的實踐能力。
第六,課表
這學期有81個課時。1.不等式18課時
2.直線圓方程25課時
3.圓錐曲線20課時
4.研究班18小時
高二數學教學工作計劃個人篇九
在我校整體構建的和諧教學模式下,學生可以在九年義務教育數學課程的基礎上,進一步提高作為未來公民的數學素養(yǎng),以適應個人發(fā)展和社會進步的需要。具體目標如下。
1.獲取必要的數學基礎知識和技能,了解基本數學概念和結論的本質,了解概念和結論的背景和應用,了解其中包含的數學思想和方法,以及它們在后續(xù)學習中的作用。通過不同形式的自主學習和探究活動,體驗數學發(fā)現和創(chuàng)造的過程。
2.提高空間想象、抽象概括、推理論證、計算求解、數據處理等基本能力。
3.提高數學上提出問題、分析問題和解決問題(包括簡單的實際問題)的能力,數學上表達和交流的能力,培養(yǎng)獨立獲取數學知識的能力。
4.培養(yǎng)數學應用和創(chuàng)新意識,努力思考和判斷現實世界中包含的一些數學模型。
5.提高學習數學的興趣,樹立學好數學的信心,形成堅忍不拔的精神和科學的態(tài)度。
6.有一定的數學視野,逐漸了解數學的科學價值、應用價值和文化價值,形成批判性思維習慣,崇尚數學的理性精神,體驗數學的審美意義,從而進一步樹立辯證唯物主義和歷史唯物主義的世界觀。
我們用的教材是人教版《普通高中課程標準實驗教科書數學(a版)》,它在堅持我國數學教育優(yōu)良傳統的前提下,認真處理繼承、借鑒、發(fā)展、創(chuàng)新的關系,體現基礎、時代、典型性、可接受性等。并具有以下特征:
1.“親和力”:以生動活潑的方式激發(fā)興趣和美感,激發(fā)學習熱情。
2.“問題”:用適時問題指導數學活動,培養(yǎng)問題意識,培養(yǎng)創(chuàng)新精神。
3.“科學”與“思想性”:通過不同數學內容的聯系與啟發(fā),強調類比、通俗化、特殊化、轉化等思想方法的應用,學會數學思維,提高數學思維能力,培養(yǎng)理性精神。
4.“時代性”和“適用性”:用具有時代性和現實感的材料創(chuàng)設情境,加強數學活動,培養(yǎng)應用意識。
1.選擇內容典型、豐富、熟悉的材料,用生動活潑的語言,創(chuàng)造能反映數學、數學思想方法、數學應用的學習情境的概念和結論,讓學生對數學產生親切感,引發(fā)學生“看發(fā)生了什么”的沖動,以培養(yǎng)興趣。
2.通過“觀察”、“思考”、“探究”等欄目,可以激發(fā)學生的思考和探究活動,提高學生的學習效率
高一班學習不錯,但是學生自我意識差,自控力弱,需要時不時提醒學生培養(yǎng)自我意識。上課最大的問題是計算能力差。學生不喜歡算題。他們只關注想法。因此,在未來的教學中,重點是培養(yǎng)學生的計算能力,進一步提高他們的思維能力。同時,由于初中課程改革,高中教材與初中教材銜接不夠強,需要在新的教學時間補充一些內容。所以時間可能還是比較緊。同時它的基礎比較薄弱,只能在教學中先注重基礎再注重基礎,力求每節(jié)課落實一個知識點,掌握一個知識點。
1.激發(fā)學生的學習興趣。通過數學活動、故事、吸引人的課堂、合理的要求、師生對話等方式,可以建立學生的學習信心,在主觀行動下提高和提高學生的學習興趣。
2.注意從實例出發(fā),從感性走向理性;注意運用比較的方法反復比較相似的概念;注意結合直觀的圖形來說明抽象的知識;關注已有知識,啟發(fā)學生思考。
3.加強學生邏輯思維能力的培養(yǎng),就是解決實際問題,培養(yǎng)和提高學生的自學能力,養(yǎng)成善于分析問題的習慣,進行辯證唯物主義教育。
4.掌握公式的推導和內部聯系;加強審查和檢查工作;掌握典型例題的分析,講解解題的關鍵和基本方法,注重提高學生分析問題的能力。
5.自始至終實施整體建設,和諧教學。
6.注重數學應用意識和能力的培養(yǎng)。