人的記憶力會隨著歲月的流逝而衰退,寫作可以彌補記憶的不足,將曾經(jīng)的人生經(jīng)歷和感悟記錄下來,也便于保存一份美好的回憶。那么我們該如何寫一篇較為完美的范文呢?這里我整理了一些優(yōu)秀的范文,希望對大家有所幫助,下面我們就來了解一下吧。
數(shù)學中考知識點占比篇一
2.垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
推論1
①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
推論2
1.圓的兩條平行弦所夾的弧相等
2.如果兩個圓相切,那么切點一定在連心線上
3.圓是以圓心為對稱中心的中心對稱圖形
4.圓是定點的距離等于定長的點的集合
5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合
6.圓的外部可以看作是圓心的距離大于半徑的點的集合
7.同圓或等圓的半徑相等
8.到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓
9.定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
10.推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。
11定理圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角
12.①直線l和⊙o相交d
②直線l和⊙o相切d=r
③直線l和⊙o相離d>r
13.切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
14.切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點的半徑
15.推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點
16.推論2經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心
17.切線長定理從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角
18.圓的外切四邊形的兩組對邊的和相等外角等于內(nèi)對角
19.
①兩圓外離d>r+r
②兩圓外切d=r+r
③兩圓相交r-rr)
④兩圓內(nèi)切d=r-r(r>r)
⑤兩圓內(nèi)含dr)
數(shù)學中考知識點占比篇二
1、數(shù)的分類及概念
數(shù)系表:
說明:“分類”的原則:1)相稱(不重、不漏)
2)有標準
2、非負數(shù):正實數(shù)與零的統(tǒng)稱。(表為:x≥0)
常見的非負數(shù)有:
性質(zhì):若干個非負數(shù)的和為0,則每個非負擔數(shù)均為0。
3、倒數(shù):
①定義及表示法
②性質(zhì):
a、a≠1/a(a≠±1);
b、1/a中,a≠0;
c、01;a1時,1/a1;
d、積為1。
4、相反數(shù):
①定義及表示法
②性質(zhì):
a、a≠0時,a≠-a;
b、a與-a在數(shù)軸上的位置;
c、和為0,商為-1。
5、數(shù)軸:
①定義(“三要素”)
②作用:
a、直觀地比較實數(shù)的大小;
b、明確體現(xiàn)絕對值意義;
c、建立點與實數(shù)的一一對應關系。
6、奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)(正整數(shù)—自然數(shù))
定義及表示:
奇數(shù):2n-1
偶數(shù):2n(n為自然數(shù))
7、絕對值:
①定義(兩種):
代數(shù)定義:
幾何定義:數(shù)a的絕對值頂?shù)膸缀我饬x是實數(shù)a在數(shù)軸上所對應的點到原點的距離。
②│a│≥0,符號“││”是“非負數(shù)”的標志;
③數(shù)a的絕對值只有一個;
④處理任何類型的題目,只要其中有“││”出現(xiàn),其關鍵一步是去掉“││”符號。
數(shù)學中考知識點占比篇三
自然數(shù)的分類包括了奇數(shù)和偶數(shù),質(zhì)數(shù)與合數(shù)、1和0。
①按能否被2整除分
可分為奇數(shù)和偶數(shù)。
1、奇數(shù):不能被2整除的數(shù)叫奇數(shù)。
2、偶數(shù):能被2整除的數(shù)叫偶數(shù)。
注:0是偶數(shù)。(20xx年國際數(shù)學協(xié)會規(guī)定,零為偶數(shù).我國20xx年也規(guī)定零為偶數(shù)。偶數(shù)可以被2整除,0照樣可以,只不過得數(shù)依然是0而已)。
②按因數(shù)個數(shù)分
可分為質(zhì)數(shù)、合數(shù)、1和0。
1、質(zhì)數(shù):只有1和它本身這兩個因數(shù)的自然數(shù)叫做質(zhì)數(shù)。也稱作素數(shù)。
2、合數(shù):除了1和它本身還有其它的因數(shù)的自然數(shù)叫做合數(shù)。
3、1:只有1個因數(shù)。它既不是質(zhì)數(shù)也不是合數(shù)。
4、當然0不能計算因數(shù),和1一樣,也不是質(zhì)數(shù)也不是合數(shù)。
備注:這里是因數(shù)不是約數(shù)。
同學們對于“0”,它是否包括在自然數(shù)之內(nèi)存在爭議,其實學術界目前關于這個問題尚無一致意見。
數(shù)學中考知識點占比篇四
(1)必然事件是指一定能發(fā)生的事件,或者說發(fā)生的可能性是100%;
(2)不可能事件是指一定不能發(fā)生的事件;
(3)隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件;
(4)隨機事件的可能性
一般地,隨機事件發(fā)生的可能性是有大小的,不同的隨機事件發(fā)生的可能性的大小有可能不同。
(5)概率
一般地,在大量重復試驗中,如果事件a發(fā)生的頻率會穩(wěn)定在某個常數(shù)p附近,那么這個常數(shù)p就叫做事件a的概率,記為p(a)=p。
(6)可能性與概率的關系
事件發(fā)生的可能性越大,它的概率越接近于1,反之事件發(fā)生的可能性越小,則它的概率越接近0。
總體:所要考查對象的全體叫總體;個體:總體中每一個考查對象。
樣本:從總體中所抽取的一部分個體叫總體的一個樣本。
樣本容量:樣本中個體的數(shù)目。
樣本平均數(shù):樣本中所有個體的平均數(shù)叫樣本平均數(shù)。
總體平均數(shù):總體中所有個體的平均數(shù)叫做總體平均數(shù)。
統(tǒng)計學中的基本思想就是用樣本對總體進行估計、推斷,用樣本的平均水平、波動情況、分布規(guī)律等特征估計總體的平均水平、波動情況和分析規(guī)律。
數(shù)學中考知識點占比篇五
初中數(shù)學長方形的中考知識點集錦
長方形也就是我們所說的矩形,是基礎的平面圖形。
有一個角是直角的平行四邊形叫做長方形(rectangle)。又叫矩形。
長方形長與寬的定義:
第一種意見:長方形長的那條邊叫長,短的那條邊叫寬。
第二種意見:和水平面同方向的叫做長,反之就叫做寬。長方形的長和寬是相對的,不能絕對的說“長比寬長”,但習慣地講,長的為長,短的為寬。
長方形的性質(zhì)
①兩條對角線相等;
②兩條對角線互相平分;
③兩組對邊分別平行;
④兩組對邊分別相等;
⑤四個角都是直角;
⑥有2條對稱軸(正方形有4條)。
以上的內(nèi)容是長方形的性質(zhì)及定義,請大家做好筆記了。
數(shù)學中考知識點占比篇六
易錯點1:有理數(shù)、無理數(shù)以及實數(shù)的有關概念理解錯誤,相反數(shù)、倒數(shù)、絕對值的意義概念混淆。以及絕對值與數(shù)的分類。每年選擇必考。
易錯點2:實數(shù)的運算要掌握好與實數(shù)有關的概念、性質(zhì),靈活地運用各種運算律,關鍵是把好符號關;在較復雜的運算中,不注意運算順序或者不合理使用運算律,從而使運算出現(xiàn)錯誤。
易錯點3:平方根、算術平方根、立方根的區(qū)別。填空題必考。
易錯點4:求分式值為零時學生易忽略分母不能為零。
易錯點5:分式運算時要注意運算法則和符號的變化。當分式的分子分母是多項式時要先因式分解,因式分解要分解到不能再分解為止,注意計算方法,不能去分母,把分式化為最簡分式。填空題必考。
易錯點6:非負數(shù)的性質(zhì):幾個非負數(shù)的和為0,每個式子都為0;整體代入法;完全平方式。
易錯點7:計算第一題必考。五個基本數(shù)的計算:0指數(shù),三角函數(shù),絕對值,負指數(shù),二次根式的化簡。
易錯點8:科學記數(shù)法。精確度,有效數(shù)字。這個上海還沒有考過,知道就好!
易錯點9:代入求值要使式子有意義。各種數(shù)式的計算方法要掌握,一定要注意計算順序。
易錯點1:各種方程(組)的解法要熟練掌握,方程(組)無解的意義是找不到等式成立的條件。
易錯點2:運用等式性質(zhì)時,兩邊同除以一個數(shù)必須要注意不能為0的情況,還要關注解方程與方程組的基本思想。(消元降次)主要陷阱是消除了一個帶x公因式要回頭檢驗!
易錯點3:運用不等式的性質(zhì)3時,容易忘記改不改變符號的方向而導致結果出錯。
易錯點4:關于一元二次方程的取值范圍的題目易忽視二次項系數(shù)不為0導致出錯。
易錯點5:關于一元一次不等式組有解無解的條件易忽視相等的情況。
易錯點6:解分式方程時首要步驟去分母,分數(shù)相相當于括號,易忘記根檢驗,導致運算結果出錯。
易錯點7:不等式(組)的解得問題要先確定解集,確定解集的方法運用數(shù)軸。
易錯點8:利用函數(shù)圖象求不等式的解集和方程的解
易錯點6:與坐標軸交點坐標一定要會求。面積最大值的求解方法,距離之和的最小值的求解方法,距離之差最大值的求解方法。
易錯點7:數(shù)形結合思想方法的運用,還應注意結合圖像性質(zhì)解題。函數(shù)圖象與圖形結合學會從復雜圖形分解為簡單圖形的方法,圖形為圖像提供數(shù)據(jù)或者圖像為圖形提供數(shù)據(jù)。
易錯點8:自變量的取值范圍有:二次根式的被開方數(shù)是非負數(shù),分式的分母不為0,0指數(shù)底數(shù)不為0,其它都是全體實數(shù)。
易錯點1:三角形的概念以及三角形的角平分線,中線,高線的特征與區(qū)別。
易錯點2:三角形三邊之間的不等關系,注意其中的“任何兩邊”。最短距離的方法。
易錯點3:三角形的內(nèi)角和,三角形的分類與三角形內(nèi)外角性質(zhì),特別關注外角性質(zhì)中的“不相鄰”。
易錯點4:全等形,全等三角形及其性質(zhì),三角形全等判定。著重學會論證三角形全等,三角形相似與全等的綜合運用以及線段相等是全等的特征,線段的倍分是相似的特征以及相似與三角函數(shù)的結合。邊邊角兩個三角形不一定全等。
易錯點5:兩個角相等和平行經(jīng)常是相似的基本構成要素,以及相似三角形對應高之比等于相似比,對應線段成比例,面積之比等于相似比的平方。
易錯點6:等腰(等邊)三角形的定義以及等腰(等邊)三角形的判定與性質(zhì),運用等腰(等邊)三角形的判定與性質(zhì)解決有關計算與證明問題,這里需注意分類討論思想的滲入。
易錯點7:運用勾股定理及其逆定理計算線段的長,證明線段的數(shù)量關系,解決與面積有關的問題以及簡單的實際問題。
易錯點8:將直角三角形,平面直角坐標系,函數(shù),開放性問題,探索性問題結合在一起綜合運用探究各種解題方法。
易錯點9:中點,中線,中位線,一半定理的歸納以及各自的性質(zhì)。
易錯點10:直角三角形判定方法:三角形面積的確定與底上的高(特別是鈍角三角形)。
易錯點11:三角函數(shù)的定義中對應線段的比經(jīng)常出錯以及特殊角的三角函數(shù)值。
數(shù)學中考知識點占比篇七
1、一元二次方程3x2+5x-2=0的常數(shù)項是-2。
2、一元二次方程3x2+4x-2=0的一次項系數(shù)為4,常數(shù)項是-2。
3、一元二次方程3x2-5x-7=0的二次項系數(shù)為3,常數(shù)項是-7。
4、把方程3x(x-1)-2=-4x化為一般式為3x2-x-2=0。
1、直角坐標系中,點a(3,0)在y軸上。
2、直角坐標系中,x軸上的任意點的橫坐標為0。
3、直角坐標系中,點a(1,1)在第一象限。
4、直角坐標系中,點a(-2,3)在第四象限。
5、直角坐標系中,點a(-2,1)在第二象限。
1、當x=2時,函數(shù)y=的值為1。
2、當x=3時,函數(shù)y=的值為1。
3、當x=-1時,函數(shù)y=的值為1。
1、函數(shù)y=-8x是一次函數(shù)。
2、函數(shù)y=4x+1是正比例函數(shù)。
3、函數(shù)是反比例函數(shù)。
4、拋物線y=-3(x-2)2-5的開口向下。
5、拋物線y=4(x-3)2-10的對稱軸是x=3。
6、拋物線的頂點坐標是(1,2)。
7、反比例函數(shù)的圖象在第一、三象限。
1、數(shù)據(jù)13,10,12,8,7的平均數(shù)是10。
2、數(shù)據(jù)3,4,2,4,4的眾數(shù)是4。
3、數(shù)據(jù)1,2,3,4,5的中位數(shù)是3。
1、cos30°=。
2、sin260°+cos260°=1。
3、2sin30°+tan45°=2。
4、tan45°=1。
5、cos60°+sin30°=1。
1、半圓或直徑所對的圓周角是直角。
2、任意一個三角形一定有一個外接圓。
3、在同一平面內(nèi),到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓。
4、在同圓或等圓中,相等的圓心角所對的弧相等。
5、同弧所對的圓周角等于圓心角的一半。
6、同圓或等圓的半徑相等。
7、過三個點一定可以作一個圓。
8、長度相等的兩條弧是等弧。
9、在同圓或等圓中,相等的圓心角所對的弧相等。
10、經(jīng)過圓心平分弦的直徑垂直于弦。
1、直線與圓有唯一公共點時,叫做直線與圓相切。
2、三角形的外接圓的圓心叫做三角形的外心。
3。弦切角等于所夾的弧所對的圓心角。
4、三角形的內(nèi)切圓的圓心叫做三角形的內(nèi)心。
5、垂直于半徑的直線必為圓的切線。
6、過半徑的外端點并且垂直于半徑的直線是圓的切線。
7、垂直于半徑的直線是圓的切線。
8、圓的切線垂直于過切點的半徑。
數(shù)學中考知識點占比篇八
1、熟知直角三角形的直角,等腰三角形的腰與角以及圓的對稱性,根據(jù)圖形的特殊性質(zhì),找準討論對象,逐一解決。在探討等腰或直角三角形存在時,一定要按照一定的原則,不要遺漏,最后要綜合。這是中考數(shù)學的注意點之一。
2、討論點的位置,一定要看清點所在的范圍,是在直線上,還是在射線或者線段上。
3、圖形的對應關系多涉及到三角形的全等或相似問題,對其中可能出現(xiàn)的有關角、邊的可能對應情況加以分類討論
4、代數(shù)式變形中如果有絕對值、平方時,里面的數(shù)開出來要注意正負號的取舍。
5、考查點的取值情況或范圍。這部分多是考查自變量的取值范圍的分類,解題中應十分注意性質(zhì)、定理的使用條件及范圍.
6、函數(shù)題目中如果說函數(shù)圖象與坐標軸有交點,那么一定要討論這個交點是和哪一個坐標軸的哪一半軸的交點。這也是中考數(shù)學的注意點。
7、由動點問題引出的`函數(shù)關系,當運動方式改變后(比如從一條線段移動到另一條線段)是,所寫的函數(shù)應該進行分段討論。
數(shù)學中考知識點占比篇九
平面向量數(shù)量積的定義
已知兩個非零向量a和b,它們的夾角為,把數(shù)量|a||b|cos叫做a和b的數(shù)量積(或內(nèi)積),記作ab.即ab=|a||b|cos,規(guī)定0a=0.
(1)ab=ba
(2)(a)b=(ab)=a(b)
(3)(a+b)c=ac+bc
[探究]根據(jù)數(shù)量積的運算律,判斷下列結論是否成立.
(1)ab=ac,則b=c嗎?
(2)(ab)c=a(bc)嗎?
提示:(1)不一定,a=0時不成立,
另外a0時,ab=ac.由數(shù)量積概念可知b與c不能確定;
(2)(ab)c=a(bc)不一定相等.
(ab)c是c方向上的向量,而a(bc)是a方向上的向量,當a與c不共線時它們必不相等.
數(shù)學中考知識點占比篇十
第一次月考已經(jīng)結束,同學們是否還沉浸在考試成功的喜悅與考試失利的悲傷中?不管你考的好與壞,那都不重要了,重要的是你要通過這次月考發(fā)現(xiàn)自己在哪些方面還存在問題。
還有不到一個月的時間初三第一次大考——期中考試就要到了,一定要改掉上次的不足,爭取期中考試的好成績。
我現(xiàn)在對如何備戰(zhàn)初三數(shù)學期中考試談一下我的看法,希望能對同學們有所幫助。
首先同學們要趕快走出上次月考成功的喜悅與失敗的陰影,初三考的不僅僅是你的學習,而且需要過硬的心態(tài),不能被一時的成功沖昏頭腦,更不能因一時的失敗而喪失信心。
其次上課一定注意聽講,因為現(xiàn)在每個學校的進度都非??欤R點又非常難,相信很多同學都跟不上老師的進度,那上課一定注意聽講,把不會的知識點在課上記下來,課下一定要主動問老師。
一定要注意老師上課講的題是最精華,一定要弄懂?,F(xiàn)在是初學不在乎你做多少題,關鍵在于你會多少題。一定要準備錯題本,反復看,只要你能保證再出現(xiàn)以前錯過的題不再出錯,那我相信你的成績會非常理想的。
還有就是盡可能找一下學校去年的試卷自己檢測一下自己,看看自己還有那些問題。
因為我們知道期中考試的難點有二次函數(shù),所以最后把二次函數(shù)當中經(jīng)??嫉念}型和大家分享一下:
二次函數(shù):
1.求二次函數(shù)解析式。
(1)當出現(xiàn)任意三個點坐標的時候,直接帶入求出解析式。
(2)當出現(xiàn)(x1,0),(x2,0)的時候,用雙根式求解析式。
(3)當出現(xiàn)(h,k)時,就用頂點式求解析式。
2.根據(jù)函數(shù)圖象判斷正負(a,b,c,a+b+c,a-b+c,2a+b)
a看開口方向(a>0開口向上,a<0開口向下),b看對稱軸(左同右異,a和b共同決定對稱軸),c看與y軸交點(c>0交y軸正半軸,=0過原點,<0交負半軸),a+b+c看當x=1時所對應的y值正負,a-b+c看當x=-1時所對應的y值正負,2a+b看對稱軸。
數(shù)學中考知識點占比篇十一
同學面對新問題準備的不好,掉下隊來,同時,也有些同學方法得當,后來居上。為什么會這樣呢?在這里,編輯了中考數(shù)學知識點復習,以備借鑒。
1.概念:用基本的運算符號(加、減、乘、除、乘方、開方)把數(shù)與字母連接而成的式子叫做代數(shù)式。單獨的一個數(shù)或字母也是代數(shù)式。
2.代數(shù)式的值:用數(shù)代替代數(shù)式里的字母,按照代數(shù)式的運算關系,計算得出的結果。
單項式和多項式統(tǒng)稱為整式。
1.單項式:1)數(shù)與字母的乘積這樣的代數(shù)式叫做單項式。單獨的一個數(shù)或字母(可以是兩個數(shù)字或字母相乘)也是單項式。
2)單項式的系數(shù):單項式中的數(shù)字因數(shù)及性質(zhì)符號叫做單項式的系數(shù)。
3)單項式的次數(shù):一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù)。
2.多項式:1)幾個單項式的和叫做多項式。在多項式中,每個單項式叫做多項式的項,其中不含字母的項叫做常數(shù)項。一個多項式有幾項就叫做幾項式。
2)多項式的次數(shù):多項式中,次數(shù)最高的項的次數(shù),就是這個多項式的次數(shù)。
3.多項式的排列:
1).把一個多項式按某一個字母的指數(shù)從大到小的順序排列起來,叫做把多項式按這個字母降冪排列。
2).把一個多項式按某一個字母的指數(shù)從小到大的順序排列起來,叫做把多項式按這個字母升冪排列。
由于單項式的項,包括它前面的性質(zhì)符號,因此在排列時,仍需把每一項的性質(zhì)符號看作是這一項的一部分,一起移動。
1.同類項——所含字母相同,并且相同字母的次數(shù)也相同的項叫做同類項,幾個常數(shù)項也叫同類項。同類項與系數(shù)無關,與字母排列的順序也無關。
2.合并同類項:把多項式中的同類項合并成一項叫做合并同類項。即同類項的系數(shù)相加,所得結果作為系數(shù),字母和字母的指數(shù)不變。
3.整式的加減:有括號的先算括號里面的,然后再合并同類項。
數(shù)學中考知識點占比篇十二
1.對稱軸:如果一個圖形沿某條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。
2.性質(zhì):
(1)軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。
(2)角平分線上的點到角兩邊距離相等。
(3)線段垂直平分線上的任意一點到線段兩個端點的距離相等。
(4)與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。
(5)軸對稱圖形上對應線段相等、對應角相等。
3.等腰三角形的性質(zhì):等腰三角形的兩個底角相等,(等邊對等角)
4.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為“三線合一”。
5.等腰三角形的判定:等角對等邊。
6.等邊三角形角的特點:三個內(nèi)角相等,等于60°,
7.等邊三角形的判定:三個角都相等的三角形是等腰三角形。
有一個角是60°的等腰三角形是等邊三角形
有兩個角是60°的三角形是等邊三角形。
8.直角三角形中,30°角所對的直角邊等于斜邊的一半。
9.直角三角形斜邊上的中線等于斜邊的一半。
數(shù)學中考知識點占比篇十三
⑴垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的2條弧。
逆定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的2條弧。
⑵有關圓周角和圓心角的性質(zhì)和定理
①在同圓或等圓中,如果兩個圓心角,兩個圓周角,兩組弧,兩條弦,兩條弦心距中有一組量相等,那么他們所對應的其余各組量都分別相等。
②一條弧所對的圓周角等于它所對的圓心角的一半。
直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。
圓心角計算公式:θ=(l/2πr)×360°=180°l/πr=l/r(弧度)
即圓心角的度數(shù)等于它所對的弧的度數(shù);圓周角的度數(shù)等于它所對的弧的度數(shù)的一半。
③如果一條弧的長是另一條弧的2倍,那么其所對的圓周角和圓心角是另一條弧的2倍。
⑶有關外接圓和內(nèi)切圓的性質(zhì)和定理
①一個三角形有唯一確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直平分線的交點,到三角形三個頂點距離相等;
②內(nèi)切圓的圓心是三角形各內(nèi)角平分線的交點,到三角形三邊距離相等。
③r=2s△÷l(r:內(nèi)切圓半徑,s:三角形面積,l:三角形周長)
④兩相切圓的連心線過切點(連心線:兩個圓心相連的直線)
⑤圓o中的弦pq的中點m,過點m任作兩弦ab,cd,弦ad與bc分別交pq于x,y,則m為xy之中點。
(4)如果兩圓相交,那么連接兩圓圓心的線段(直線也可)垂直平分公共弦。
(5)弦切角的度數(shù)等于它所夾的弧的度數(shù)的一半。
(6)圓內(nèi)角的度數(shù)等于這個角所對的弧的度數(shù)之和的一半。
(7)圓外角的度數(shù)等于這個角所截兩段弧的度數(shù)之差的一半。
(8)周長相等,圓面積比長方形、正方形、三角形的面積大。
數(shù)學中考知識點占比篇十四
在初中一開始,學生學習小學數(shù)學形成的某些認識會妨礙他們學習代數(shù)初步知識,使其產(chǎn)生解題錯誤。
例如,在小學數(shù)學中,解題結果常常是一個確定的數(shù)。受此影響,學生在解答下述問題時出現(xiàn)混亂與錯誤。原題是這樣的:禮堂第一排有a個座位,后面每排都比前1排多1個座位,第2排有幾個座位?第3排呢?設m為第n排的座位數(shù),那么m是多少?求a=20,n=19時,m的值。學生在解答上述問題時,受結果是確定的數(shù)的影響,把用n表示m與求m的值混為一談,暴露出其思考過程受到上述干擾的痕跡。
又如,小學數(shù)學中形成的一些結論都只是在沒有學負數(shù)的情況下成立的。在小學,學生對數(shù)之和不小于其中任何一個加數(shù),即a+ba是堅信不疑的,但是,學了負數(shù)后,a+b再有,學生習慣于算術解法解應用題,這會對學生學習代數(shù)方法列方程解應用題產(chǎn)生干擾。例如,在求兩車相遇時間時(甲、乙兩站間的路程為360km,一列慢車從甲站開出,每小時行駛48km,一列快車從乙站開出,每小時行駛72km,兩列火車同時開出,相向而行,經(jīng)過多少小時相遇?),列出的“方程”為x=360/48+72。由此可以看出學生拘泥于算術解法的痕跡。而初中需要列出48x+72x=360這樣的方程,這表明學生對已知數(shù)和未知數(shù)之間的相等關系的把握程度。
總之,初中開始階段,學生解題錯誤的原因??勺匪莸叫W數(shù)學知識對其新學知識的影響。講清新學知識的意義(如用字母表示數(shù))、范圍(正數(shù)、0、負數(shù))、方法(代數(shù)和、代數(shù)方法)與舊有知識(具體數(shù)字、非負數(shù)、加減運算、算術方法)的不同,有助于克服干擾,減少初始階段的錯誤。
隨著初中知識的展開,初中數(shù)學知識本身也會前后相互干擾。
例如,在學有理數(shù)的減法時,教師反復強調(diào)減去一個數(shù)等于加上它的相反數(shù),因而3-7中7前面的符號“-”是減號給學生留下了深刻的印象。緊接著學習代數(shù)和,又要強調(diào)把3-7看成正3與負7之和,“-”又成了負號。學生不禁產(chǎn)生到底要把“-”看成減號還是負號的困惑。這個困惑不能很好地消除,學生就會產(chǎn)生運算錯誤。
又如,了解不等式的解集以及運用不等式基本性質(zhì)3是不等式教學的一個難點,學生常常在這里犯錯誤,其原因就有受等式兩邊可以乘以或除以任何一個數(shù)以及方程的解是一個數(shù)有關。事實也證明,把不等式的有關內(nèi)容與等式及方程的相應內(nèi)容加以比較,使學生理解兩者的異同,有助于學生學好不等式的內(nèi)容。
學生在解決單一問題與綜合問題時的表現(xiàn)也可以說明這個問題。學生在解答單一問題時,需要提取、運用的知識少,因而受到知識間的干擾小,產(chǎn)生錯誤的可能性小;而遇到綜合問題,在知識的選取、運用上受到的干擾大,容易出錯。
數(shù)學中考知識點占比篇十五
在代數(shù)式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數(shù)式叫單項式;數(shù)字或字母的乘積叫單項式(單獨的一個數(shù)字或字母也是單項式)。
單項式中的數(shù)字因數(shù)叫做這個單項式的系數(shù)。所有字母的指數(shù)之和叫做這個單項式的次數(shù)。任何一個非零數(shù)的零次方等于1.
:
幾個單項式的和叫多項式。
多項式中所含單項式的個數(shù)就是多項式的項數(shù),每個單項式叫多項式的項;多項式里,次數(shù)最高項的次數(shù)叫多項式的次數(shù)。
:
不含字母的項叫做常數(shù)項。
(1)把一個多項式按某一個字母的指數(shù)從大到小的順序排列起來,叫做把多項式按這個字母降冪排列。
(2)把一個多項式按某一個字母的指數(shù)從小到大的順序排列起來,叫做把多項式按這個字母升冪排列。
(1)由于單項式的項,包括它前面的性質(zhì)符號,因此在排列時,仍需把每一項的性質(zhì)符號看作是這一項的一部分,一起移動。
(2)有兩個或兩個以上字母的多項式,排列時,要注意:
a.先確認按照哪個字母的指數(shù)來排列。
b.確定按這個字母向里排列,還是向外排列。
(3)整式:
單項式和多項式統(tǒng)稱為整式。
多項式的加法,是指多項式的同類項的系數(shù)相加(即合并同類項)。
所含字母相同,并且相同字母的次數(shù)也分別相同的項叫做同類項。
多項式中的同類項可以合并,叫做合并同類項,合并同類項的法則是:同類項的系數(shù)相加,所得的結果作為系數(shù),字母與字母的指數(shù)不變。
(1)判斷幾個單項式或項,是否是同類項,就要掌握兩個條件:
①所含字母相同。
②相同字母的次數(shù)也相同。
(2)同類項與系數(shù)無關,與字母排列的順序也無關。
(3)所有常數(shù)項都是同類項。
(1)準確的找出同類項;
(2)逆用分配律,把同類項的系數(shù)加在一起(用小括號),字母和字母的指數(shù)不變;
(3)寫出合并后的結果。
(1)如果兩個同類項的系數(shù)互為相反數(shù),合并同類項后,結果為0;
(2)不要漏掉不能合并的項;
(3)只要不再有同類項,就是結果(可能是單項式,也可能是多項式)。
整式的乘除:重點是整式的乘除,尤其是其中的乘法公式。乘法公式的結構特征以及公式中的字母的廣泛含義,學生不易掌握.因此,乘法公式的靈活運用是難點,添括號(或去括號)時,括號中符號的處理是另一個難點。添括號(或去括號)是對多項式的變形,要根據(jù)添括號(或去括號)的法則進行。在整式的乘除中,單項式的乘除是關鍵,這是因為,一般多項式的乘除都要“轉(zhuǎn)化”為單項式的乘除。
(1)單項式的四則運算
此類題目多以選擇題和應用題的形式出現(xiàn),其特點是考查單項式的四則運算。
(2)單項式與多項式的運算