又大又粗又硬又爽又黄毛片,国产精品亚洲第一区在线观看,国产男同GAYA片大全,一二三四视频社区5在线高清

當(dāng)前位置:網(wǎng)站首頁 >> 作文 >> 蘇科版初二數(shù)學(xué)上冊目錄(3篇)

蘇科版初二數(shù)學(xué)上冊目錄(3篇)

格式:DOC 上傳日期:2023-03-21 06:34:41
蘇科版初二數(shù)學(xué)上冊目錄(3篇)
時間:2023-03-21 06:34:41     小編:儲心悅Y

在日常學(xué)習(xí)、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。范文書寫有哪些要求呢?我們怎樣才能寫好一篇范文呢?下面我給大家整理了一些優(yōu)秀范文,希望能夠幫助到大家,我們一起來看一看吧。

蘇科版初二數(shù)學(xué)上冊目錄篇一

直角三角形性質(zhì)定理:

1.直角三角形兩直角邊a,b的平方和等于斜邊c的平方。即a2+b2=c2。

2.在直角三角形中,兩個銳角互余。

3.在直角三角形中,斜邊上的中線等于斜邊的一半(即直角三角形的外心位于斜邊的中點,外接圓半徑r=c/2)。

4.直角三角形的兩直角邊的乘積等于斜邊與斜邊上高的乘積。

5.在直角三角形中,如果有一個銳角等于30°,那么它所對的直角邊等于斜邊的一半。其逆定理也成立,即在直角三角形中,如果有一條直角邊等于斜邊的一半,那么這條直角邊所對的銳角等于30°。

7.直角三角形直角上的角平分線與斜邊的交點d 則bd:dc=ab:ac

蘇科版初二數(shù)學(xué)上冊目錄篇二

在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形.

(1)多邊形的一些要素:

邊:組成多邊形的各條線段叫做多邊形的邊.

頂點:每相鄰兩條邊的公共端點叫做多邊形的頂點.

內(nèi)角:多邊形相鄰兩邊組成的角叫多邊形的內(nèi)角,一個n邊形有n個內(nèi)角。

外角:多邊形的邊與它的鄰邊的延長線組成的角叫做多邊形的外角。

(2)在定義中應(yīng)注意:

①一些線段(多邊形的邊數(shù)是大于等于3的正整數(shù));

②首尾順次相連,二者缺一不可;

③理解時要特別注意“在同一平面內(nèi)”這個條件,其目的是為了排除幾個點不共面的情況,即空間

蘇科版初二數(shù)學(xué)上冊目錄篇三

第一章勾股定理

定義:如果直角三角形兩條直角邊分別為a,b,斜邊為c,即直角三角形兩直角邊的平方和等于斜邊的平方。

判定:如果三角形的三邊長a,b,c滿足a +b = c,那么這個三角形是直角三角形。

定義:滿足a +b =c的三個正整數(shù),稱為勾股數(shù)。

第二章實數(shù)

定義:任何有限小數(shù)或無限循環(huán)小數(shù)都是有理數(shù)。無限不循環(huán)小數(shù)叫做無理數(shù)

(有理數(shù)總可以用有限小數(shù)或無限循環(huán)小數(shù)表示)

一般地,如果一個正數(shù)x的平方等于a,那么這個正數(shù)x就叫做a的算術(shù)平方根。

特別地,我們規(guī)定0的算術(shù)平方根是0。

一般地,如果一個數(shù)x的平方等于a,那么這個數(shù)x就叫做a的平方根(也叫二次方根)

一個正數(shù)有兩個平方根;0只有一個平方根,它是0本身;負數(shù)沒有平方根。

求一個數(shù)a的平方根的運算,叫做開平方,其中a叫做被開方數(shù)。

一般地,如果一個數(shù)x的立方等于a,那么這個數(shù)x就叫做a的立方根(也叫做三次方根)。

正數(shù)的立方根是正數(shù);0的立方根是0;負數(shù)的立方根是負數(shù)。

求一個數(shù)a的立方根的運算,叫做開立方,其中a叫做被開方數(shù)。

有理數(shù)和無理數(shù)統(tǒng)稱為實數(shù),即實數(shù)可以分為有理數(shù)和無理數(shù)。

每一個實數(shù)都可以用數(shù)軸上的一個點來表示;反過來,數(shù)軸上的每一個點都表示一個實數(shù)。即實數(shù)和數(shù)軸上的點是一一對應(yīng)的。

在數(shù)軸上,右邊的點表示的數(shù)比左邊的點表示的數(shù)大。

第三章圖形的平移與旋轉(zhuǎn)

定義:在平面內(nèi),將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移。平移不改變圖形的形狀和大小。

經(jīng)過平移,對應(yīng)點所連的線段平行也相等;對應(yīng)線段平行且相等,對應(yīng)角相等。

在平面內(nèi),將一個圖形繞一個定點沿某個方向轉(zhuǎn)動一個角度,這樣的圖形運動稱為旋轉(zhuǎn),這個定點稱旋轉(zhuǎn)中心,轉(zhuǎn)動的角稱為旋轉(zhuǎn)角。旋轉(zhuǎn)不改變圖形的大小和形狀。

任意一對對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,對應(yīng)點到旋轉(zhuǎn)中心的距離相等。

第四章、三角形

一、知識框架:

二、知識概念:

1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

2.三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。

3.高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。

4.中線:在三角形中,連接一個頂點和它對邊中點的線段叫做三角形的中線。

5.角平分線:三角形的一個內(nèi)角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。

6.三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個性質(zhì)叫三角形的穩(wěn)定性。

7.多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。

8.多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。

9.多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。

10.多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。

11.正多邊形:在平面內(nèi),各個角都相等,各條邊都相等的多邊形叫正多邊形。

12.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做多邊形覆蓋平面(平面鑲嵌)。

鑲嵌的條件:當(dāng)圍繞一點拼在一起的幾個多邊形的內(nèi)角加在一起恰好組成一個時,就能拼成一個平面圖形。

13.公式與性質(zhì):

⑴三角形的內(nèi)角和:三角形的內(nèi)角和為180°

⑵三角形外角的性質(zhì):

性質(zhì)1:三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和。

性質(zhì)2:三角形的一個外角大于任何一個和它不相鄰的內(nèi)角。

⑶多邊形內(nèi)角和公式:邊形的內(nèi)角和等于·180°

⑷多邊形的外角和:多邊形的外角和為360°。

⑸多邊形對角線的條數(shù):①從邊形的一個頂點出發(fā)可以引條對角線,把多邊形分成個三角形.②邊形共有條對角線。

第五章:軸對稱

1.基本概念:

⑴軸對稱圖形:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形。

⑵兩個圖形成軸對稱:把一個圖形沿某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這條直線對稱。

⑶線段的垂直平分線:經(jīng)過線段中點并且垂直于這條線段的直線,叫做這條線段的垂直平分線。

⑷等腰三角形:有兩條邊相等的三角形叫做等腰三角形.相等的兩條邊叫做腰,另一條邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫做底角。

⑸等邊三角形:三條邊都相等的三角形叫做等邊三角形。

2.基本性質(zhì):

⑴對稱的性質(zhì):

①不管是軸對稱圖形還是兩個圖形關(guān)于某條直線對稱,對稱軸都是任何一對對應(yīng)點所連線段的垂直平分線。

②對稱的圖形都全等。

⑵線段垂直平分線的性質(zhì):

①線段垂直平分線上的點與這條線段兩個端點的距離相等。

②與一條線段兩個端點距離相等的點在這條線段的垂直平分線上。

⑶關(guān)于坐標(biāo)軸對稱的點的坐標(biāo)性質(zhì)

⑷等腰三角形的性質(zhì):

①等腰三角形兩腰相等。

②等腰三角形兩底角相等(等邊對等角)。

③等腰三角形的頂角角平分線、底邊上的中線,底邊上的高相互重合。

④等腰三角形是軸對稱圖形,對稱軸是三線合一(1條)。

⑸等邊三角形的性質(zhì):

①等邊三角形三邊都相等。

②等邊三角形三個內(nèi)角都相等,都等于60°

③等邊三角形每條邊上都存在三線合一。

④等邊三角形是軸對稱圖形,對稱軸是三線合一(3條)。

3.基本判定:

⑴等腰三角形的判定:

①有兩條邊相等的三角形是等腰三角形。

②如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)。

⑵等邊三角形的判定:

①三條邊都相等的三角形是等邊三角形。

②三個角都相等的三角形是等邊三角形。

③有一個角是60°的等腰三角形是等邊三角形。

4.基本方法:

⑴做已知直線的垂線:

⑵做已知線段的垂直平分線:

⑶作對稱軸:連接兩個對應(yīng)點,作所連線段的垂直平分線。

⑷作已知圖形關(guān)于某直線的對稱圖形:

⑸在直線上做一點,使它到該直線同側(cè)的兩個已知點的距離之和最短。

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔
你可能感興趣的文章
a.付費復(fù)制
付費獲得該文章復(fù)制權(quán)限
特價:5.99元 10元
微信掃碼支付
已付款請點這里
b.包月復(fù)制
付費后30天內(nèi)不限量復(fù)制
特價:9.99元 10元
微信掃碼支付
已付款請點這里 聯(lián)系客服