作為一名默默奉獻的教育工作者,通常需要用到教案來輔助教學,借助教案可以讓教學工作更科學化。那么教案應(yīng)該怎么制定才合適呢?以下是小編為大家收集的教案范文,僅供參考,大家一起來看看吧。
初中數(shù)學上冊教案 初二數(shù)學上冊教案蘇教版篇一
本節(jié)的重點是矩形的性質(zhì)和判定定理。矩形是在平行四邊形的前提下定義的,首先她是平行四邊形,但它是特殊的平行四邊形,特殊之處就是有一個角是直角,因而就增加了一些特殊的性質(zhì)和不同于平行四邊形的判定方法。矩形的這些性質(zhì)和判定定理即是平行四邊形性質(zhì)與判定的延續(xù),又是以后要學習的正方形的基礎(chǔ)。
本節(jié)的難點是矩形性質(zhì)的靈活應(yīng)用。由于矩形是特殊的平行四邊形,所以它不但具有平行四邊形的性質(zhì),同時還具有自己獨特的性質(zhì)。如果得到一個平行四邊形是矩形,就可以得到許多關(guān)于邊、角、對角線的條件,在實際解題中,應(yīng)該應(yīng)用哪些條件,怎樣應(yīng)用這些條件,常常讓許多學生手足無措,教師在教學過程中應(yīng)給予足夠重視。
教法建議
根據(jù)本節(jié)內(nèi)容的特點和與平行四邊形的關(guān)系,建議教師在教學過程中注意以下問題:
1.矩形的知識,學生在小學時接觸過一些,可由小學學過的知識作為引入。
2.矩形在現(xiàn)實中的實例較多,在講解矩形的性質(zhì)和判定時,教師可自行準備或由學生準備一些生活實例來進行判別應(yīng)用了哪些性質(zhì)和判定,既增加了學生的參與感又鞏固了所學的知識.
3. 如果條件允許,教師在講授這節(jié)內(nèi)容前,可指導學生按照教材145頁圖4-30所示,制作一個平行四邊形作為教學過程中的道具,既增強了學生的動手能力和參與感,有在教學中有切實的體例,使學生對知識的掌握更輕松些.
4. 在對性質(zhì)的講解中,教師可將學生分成若干組,每個學生分別對事先準備后的圖形進行邊、角、對角線的測量,然后在組內(nèi)進行整理、歸納.
5. 由于矩形的性質(zhì)定理證明比較簡單,教師可引導學生分析思路,由學生來進行具體的證明.
6.在矩形性質(zhì)應(yīng)用講解中,為便于理解掌握,教師要注意題目的層次安排。
矩形教學設(shè)計
教學目標
1.知道矩形的定義和矩形與平行四邊形之間的聯(lián)系;能說出矩形的四個角都是直角和矩形的的對角線相等的性質(zhì);能推出直角三角形斜邊上的中線等于斜邊的一半的性質(zhì)。
2.能運用以上性質(zhì)進行簡單的證明和計算。
此外,從矩形與平行四邊形的區(qū)別與聯(lián)系中,體會特殊與一般的關(guān)系,滲透集合的思想,培養(yǎng)學生辨證唯物主義觀點。
引導性材料
想一想:一般四邊形與平行四邊形之間的相互關(guān)系?在圖4.5-1的圓圈中填上四邊形和平行四邊形的字樣來說明這種關(guān)系:即平行四邊形是特殊的四邊形,又具有一般四邊形的一切性質(zhì);具有一些特殊的性質(zhì)。
小學里已學過長方形,即矩形。顯然,矩形是平行四邊形,而且矩形還具有四個角都是直角(小學里已學過)等特殊性質(zhì),那么,如果在圖4.5-1中再畫一個圈表示矩形,這個圈應(yīng)畫在哪里?
(讓學生初步感知矩形與平行四邊形的從屬關(guān)系。)
演示:用四根木條制作一個平行四邊形教具。利用平行四邊形的不穩(wěn)定性,演示如圖4.5-2,當平行四邊形的一個內(nèi)角由銳角變?yōu)殁g角的過程中,會發(fā)生怎樣的特殊情況,這時的圖形是什么圖形(矩形)。
問題1:從上面的演示過程,可以發(fā)現(xiàn):平行四邊形具備什么條件時,就成了矩形?
說明與建議:教師的演示應(yīng)充分展現(xiàn)變化過程,從而讓學生深切地感受到短形是無數(shù)個平行四邊形中的一個特例,同時,又使學生能正確地給出矩形的定義。
問題2:矩形是特殊的平行四邊形,它除了有一個角是直角以外,還可能具有哪些平行四邊形所沒有的特殊性質(zhì)呢?
說明與建議:讓學生分組探索,有必要時,教師可引導學生,根據(jù)研究平行四邊形獲得的經(jīng)驗,分別從邊、角、對角線三個方面探索矩形的特性,還可提醒學生,這種探索的基礎(chǔ)是矩形有一個角是直角矩形的四個角都相等(矩形性質(zhì)定理1),要學生給以證明(即課本例1后練習第1題)。
學生能探索得出矩形的鄰邊互相垂直的特性,教師可作說明:這與矩形的四個角是直角本質(zhì)上是一致的,所以不必另列為一個性質(zhì)。
學生探索矩形的四條對角線的大小關(guān)系時,如有困難,可引導學生測量并比較矩形兩條對角線的長度,然后加以證明,得出性質(zhì)定理2。
問題3:矩形的一條對角線把矩形分成兩個直角三角形,矩形的對角線既互相平分又相等,由此,我們可以得到直角三角形的什么重要性質(zhì)?
說明與建議:(1)讓學生先觀察圖4.5-3,并議論猜想,如學生有困難,教師可引導學生觀察圖中的一個直角三角形(如rt△abc),讓學生自己發(fā)現(xiàn)斜邊上的中線bo與斜線ac的大小關(guān)系,然后讓學生自己給出如下證明:
證明:在矩形abcd中,對角線ac、bd相交于點o,ac=bd(矩形的對角線相等)。
ao=co
在rt△abc中,bo是斜邊ac上的中線,且 。
直角三角形斜邊上的中線等于斜邊的一半。
例題解析
例1:(即課本例1)
說明:本題難度不大,又有助于學生加深對性質(zhì)定理的理解,教學中應(yīng)引導學生探索解法:
如圖4.5-4,欲求對角線bd的長,由于bad=90,ab=4cm,則只要再找出rt△abd中一條直角邊的長,或一個銳角的度數(shù),再從已知條件aod=120出發(fā),應(yīng)用矩形的性質(zhì)可知,adb=30,另外,還可以引導學生探究△aob是什么特殊的三角形(等邊三角形),課本用了第一種解法,并給出了解幾何計算題書寫格式的示范;第二種解法如下:
∵四邊形abcd是矩形,
ac=bd(矩形的對角線相等)。
又 。
oa=bo,△aob是等腰三角形,
∵aod=120,aob=180- 120= 60
aob是等邊三角形。
bo=ab=4cm,
bd=2bo=244cm=8cm。
例2:(補充例題)
已知:如圖4.5-5四邊形abcd中,abc=adc=90, e是ac的中點,ef平分bed交bd于點f。
(1)猜想:ef與bd具有怎樣的關(guān)系?
(2)試證明你的猜想。
解:(1)ef垂直平分bd。
(2)證明:∵abc=90,點e是ac的中點。
(直角三角形的斜邊上的中線等于斜邊的一半)。
同理: 。
be=de。
又∵ef平分bed。
efbd,bf=df。
說明:本例是一道不給出結(jié)論,需要學生自己觀察---猜想---討論的幾何命題,有助于發(fā)展學生的推理(包括合情推理和邏輯推理)能力。如果學生不適應(yīng),或有困難,教師可根據(jù)實際情況加以引導,這種訓練,重要的不是猜對了沒有?證明了沒有?而是讓學生經(jīng)歷這樣一種自己研究圖形性質(zhì)的過程,順便指出:求解本題的重要基礎(chǔ)是識圖技能----能從復(fù)雜圖形中分解出如圖4.5-6所示的三個基本圖形。
課堂練習
1.課本例1后練習題第2題。
2.課本例1后練習題第4題。
小結(jié)
1.矩形的定義:
2.歸納總結(jié)矩形的性質(zhì):
對邊平行且相等
四個角都是直角
對角線平行且相等
3.直角三角形斜邊上的中線等于斜邊的一半。
4.矩形的一條對角線把矩形分成兩個全等的直角三角形;矩形的兩條對角線把矩形分成四個全等的等腰三角形。因此,有關(guān)矩形的問題往往可化為直角三角形或等腰三角形的問題來解決。
作業(yè)
1.課本習題4.3a組第2題。
2.課本復(fù)習題四a組第6、7題。
初中數(shù)學上冊教案 初二數(shù)學上冊教案蘇教版篇二
1、教材分析
(1)知識結(jié)構(gòu):
(2)重點和難點分析:
重點:四邊形的有關(guān)概念及內(nèi)角和定理。因為四邊形的有關(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識,對后繼知識的學習起著重要的作用。
難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用。在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上在同一平面內(nèi)這個條件,這幾個字的意思學生不好理解,所以是難點。
2、教法建議
(1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學生認識到這些四邊形都是常見圖形,研究它們具有實際應(yīng)用意義,從而激發(fā)學生學習數(shù)學的興趣。
(2)本節(jié)的教學,要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的.有關(guān)概念,如四邊形的邊、頂點、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對比著指給學生看,讓學生明確這些概念。
(3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決。結(jié)合圖形,讓學生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學生加深對對角線的作用的認識。
(4)本節(jié)用到的數(shù)學思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對這兩種數(shù)學思想方法進行總結(jié),使學生明白碰到復(fù)雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題。
一、素質(zhì)教育目標
(一)知識教學點
1、使學生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和外角和定理。
2、了解四邊形的不穩(wěn)定性及它在實際生產(chǎn),生活中的應(yīng)用。
(二)能力訓練點
1、通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力。
2、通過推導四邊形內(nèi)角和定理,對學生滲透化歸思想。
3、會根據(jù)比較簡單的條件畫出指定的四邊形。
4、講解四邊形外角概念和外角定理時,聯(lián)系三角形的有關(guān)概念對學生滲透類比思想。
(三)德育滲透點
使學生認識到這些四邊形都是常見的,研究他們都有實際應(yīng)用意義,從而激發(fā)學生學習新知識的興趣。
(四)美育滲透點
通過四邊形內(nèi)角和定理數(shù)學,滲透統(tǒng)一美,應(yīng)用美。
二、學法引導
類比、觀察、引導、講解
三、重點難點疑點及解決辦法
1、教學重點:四邊形及其有關(guān)概念;熟練推導四邊形外角和這一結(jié)論,并用此結(jié)論解決與四邊形內(nèi)外角有關(guān)計算問題。
2、教學難點:理解四邊形的有關(guān)概念中的一些細節(jié)問題;四邊形不穩(wěn)定性的理解和應(yīng)用。
3、疑點及解決辦法:四邊形的定義中為什么要有在平面內(nèi),而三角形的定義中就沒有呢?根據(jù)指定條件畫四邊形,關(guān)鍵是要分析好作圖的順序,一般先作一個角。
四、課時安排
2課時
五、教具學具準備
投影儀、膠片、四邊形模型、常用畫圖工具
六、師生互動活動設(shè)計
教師引入新課,學生觀察圖形,類比三角形知識導出四邊形有關(guān)概念;師生共同推導四邊形內(nèi)角和的定理,學生鞏固內(nèi)角和定理和應(yīng)用;共同分析探索外角和定理,學生閱讀相關(guān)材料。
第一課時
七、教學步驟
【復(fù)習引入】
在小學里已經(jīng)對四邊形、長方形、平形四邊形的有關(guān)知識有所了解,但還很膚淺,這一
章我們將比較系統(tǒng)地學習各種四邊形的性質(zhì)和判定分析它們之間的關(guān)系,并運用有關(guān)四邊形的知識解決一些新問題。
【引入新課】
用投影儀打出課前畫好的教材中p119的圖。
師問:在上圖中你能把知道的長方形、正方形、平行四邊形、梯形找出來嗎?(啟發(fā)學生找上述圖形,最后教師用彩色筆勾出幾個圖形)。
【講解新課】
1、四邊形的有關(guān)概念
結(jié)合圖形講解四邊形,四邊形的邊、頂點、角,凸四邊形,四邊形的對角線(同時學生在書上畫出上述概念),講解這些概念時:
(1)要結(jié)合圖形。
(2)要與三角形類比。
(3)講清定義中的關(guān)鍵詞語。如四邊形定義中要說明為什么加上同一平面內(nèi)而三角形的定義中為什么不加同一平面內(nèi)(三角形的三個頂點一定在同一平面內(nèi),而四個點有可能不在同一平面內(nèi),如圖42中的點 。我們現(xiàn)在只研究平面圖形,故在定義中加上在同一平面內(nèi)的限制)。
(4)強調(diào)四邊形對角線的作用,作為四邊形的一種常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形來解(滲透化歸思想),并觀察圖4—3用對角線分成的這些三角形與原四邊形的關(guān)系。
(5)強調(diào)四邊形的表示方法,一定要按頂點順序書寫四邊形如圖41。
(6)在判斷一個四邊形是不是凸四邊形時,一定要按照定義的要求把每一邊都延長后再下結(jié)論如圖4—4,圖4—5。
2、四邊形內(nèi)角和定理
教師問:
(1)在圖4—3中對角線ac把四邊形abcd分成幾個三角形?
(2)在圖4—6中兩條對角線ac和bd把四邊形分成幾個三角形?
(3)若在四邊形abcd如圖4—7內(nèi)任取一點o,從o向四個頂點作連線,把四邊形分成幾個三角形。
我們知道,三角形內(nèi)角和等于180,那么四邊形的內(nèi)角和就等于:
①2180=360如圖4
②4180—360=360如圖4—7。
例1 已知:如圖48,直線 于b、 于c。
求證:(1) (2) 。
本例題是四邊形內(nèi)角和定理的應(yīng)用,實際上它證明了兩邊相互垂直的兩個角相等或互補的關(guān)系,何時用相等,何時用互補,如果需要應(yīng)用,作兩三步推理就可以證出。
【總結(jié)、擴展】
1、四邊形的有關(guān)概念。
2、四邊形對角線的作用。
3、四邊形內(nèi)角和定理。
八、布置作業(yè)
教材p128中1(1)、2、 3。
九、板書設(shè)計
四邊形(一)
四邊形有關(guān)概念
四邊形內(nèi)角和
例1
十、隨堂練習
教材p122中1、2、3。
初中數(shù)學上冊教案 初二數(shù)學上冊教案蘇教版篇三
一、學生情況分析及改進提高措施:
學生們經(jīng)過兩年的學習,已經(jīng)具備了初步的邏輯思維能力和簡單的抽象概括能力,養(yǎng)成了一些良好的學習習慣,掌握了一些科學的學習方法,學會了獨立思考和與人溝通、協(xié)商、合作、交流的能力,學會了探究問題,并能根據(jù)具體情況提出合理的問題,還能正確解決問題的能力。無論是理解問題的能力,還是分析、解決問題的能力均有所提高,基礎(chǔ)知識和基本技能打得也比較扎實,對數(shù)學學習有著濃厚的興趣,樂于參與到學習活動中去,特別是對一些動手操作,合作學習,實踐活動等學習內(nèi)容尤為感興趣,因此,在教學中應(yīng)多設(shè)計一些活動,引導學生進行獨立思考與合作交流,幫助學生積累參加數(shù)學學習活動的經(jīng)驗。
在數(shù)學知識上已經(jīng)掌握了兩步計算式題和有余數(shù)的除法,還有統(tǒng)計知識,并學會了辨認八個方位;掌握了萬以內(nèi)數(shù)的讀法、寫法和加、減法;還掌握了長度單位毫米、厘米、分米、米和千米的實際長度和簡單的換算以及實際測量,并能用以上這些相應(yīng)的知識解決實際生活中的問題??傊?,這些技能和知識點都為本學期進一步學習新知識打下了堅實的基礎(chǔ),他們愛學數(shù)學的熱情,以及對數(shù)學的感悟能力會在本學期進一步得到發(fā)揚光大,他們的情感、態(tài)度、價值觀會沿著良性軌道螺旋式上升。
具體提高措施是:
1.從學生的年齡特點出發(fā),多采用情境活動式教學,培養(yǎng)學生的參與意識。兩班學生都能根據(jù)教師給出的情境獲取相關(guān)的數(shù)學信息,并能根據(jù)有效信息提出數(shù)學問題,能積極投入到探索問題的活動中去,絕大部分學生能夠在課堂上主動的研究問題,獲取知識。
2.在課堂教學中,多增添一些與學生生活相關(guān)的利于孩子理解的問題,讓學生在解決問題的過程中能夠聯(lián)系到實際,便于對問題的理解。結(jié)合學生的生活實際,將問題生活化,讓學生從生活中獲取到更多的解決問題的素材。
3.課后練習注重增添以學習內(nèi)容為主的相關(guān)實踐練習,加強各學科之間的聯(lián)系,少一些呆板的練習,提高練習的實踐性和趣味性。在上學期的教學中,我發(fā)現(xiàn)學生們比較喜歡做不同科目之間有聯(lián)系的綜合性作業(yè),例如我把數(shù)學與科學課相結(jié)合,讓他們種豆子,了解植物的生長,并做記錄,再將每天的記錄制作成統(tǒng)計圖,學生完成作業(yè)的積極性特別高。我為了讓學生了解長度單位,讓他們從成語詞典上收集有關(guān)長度單位的成語,通過對詞語的理解把握其表示的長度。
4.加強學校教育和家庭教育的聯(lián)系。關(guān)注學生的平時學習情況,與學生家長多溝通交流。
二、本冊教材分析
本冊教材充分體現(xiàn)了新《課程標準》的理念,以學生的數(shù)學活動實踐為學習內(nèi)容,教材創(chuàng)設(shè)了生動有趣的情境,引導學生在解決現(xiàn)實問題的過程中獲得對數(shù)學知識的理解和體驗。教學內(nèi)容主要包括(1)乘法;(2)除法;(3)觀察物體;(4)千克、克、噸;(5)、周長;(6)年、月、日;(7)可能性;(8)共有五個社會實踐活動,還有兩個整理復(fù)習,一個總復(fù)習。具體特點是:
1.在數(shù)與代數(shù)的學習中,重視動手操作與抽象概括相結(jié)合,體驗乘、除法意義,發(fā)展了學生的數(shù)感和符號感。
2.在空間和圖形學習中,從學生的生活經(jīng)驗出發(fā),注重通過操作活動發(fā)展空間觀念。
3.教材為教師留下了創(chuàng)造空間,可結(jié)合自身教學要求,生發(fā)新的教學設(shè)想,內(nèi)化自己的教學設(shè)計。
三、總體教學目標:
(一)、知識與技能
1.在單元學習中,學生通過“數(shù)一數(shù)”、“分一分”等活動,經(jīng)歷從具體情境中抽象出乘法除法算式,體會乘法與除法的意義。
2.學平面圖形的周長,會進行周長的計算。
(二)、實踐能力培養(yǎng)
1.觀察物體,引導學生經(jīng)歷觀察的過程,體驗從不同的位置觀察,所看到的物體可能是不一樣的。
2.結(jié)合生活情境,感受并認識質(zhì)量單位。
3.經(jīng)歷對生活中某些現(xiàn)象進行推理、判斷的過程,能對生活中的某些現(xiàn)象按一定的方法進行邏輯推理、判斷其結(jié)果。
(三)、情感與態(tài)度
1、讓學生在觀察和操作的學習活動中,能夠感受到思考的條理性和合理性。
2、教師重視對學生數(shù)學學習過程的評價,讓他們在感受到樂趣之外,應(yīng)具備必要的學習自信心,養(yǎng)成良好的學習習慣。
教研專題:
創(chuàng)設(shè)課堂學習情境,有效培養(yǎng)創(chuàng)新意識。
個人專題:
在情境中培養(yǎng)學生的自主學習意識,提高課堂的有效性。
初中數(shù)學上冊教案 初二數(shù)學上冊教案蘇教版篇四
教學目標:
知識與技能
1、掌握直角三角形的判別條件,并能進行簡單應(yīng)用;
2、進一步發(fā)展數(shù)感,增加對勾股數(shù)的直觀體驗,培養(yǎng)從實際問題抽象出數(shù)學問題的能力,建立數(shù)學模型、
3、會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應(yīng)用哪個結(jié)論、
情感態(tài)度與價值觀
敢于面對數(shù)學學習中的困難,并有獨立克服困難和運用知識解決問題的成功經(jīng)驗,進一步體會數(shù)學的應(yīng)用價值,發(fā)展運用數(shù)學的信心和能力,初步形成積極參與數(shù)學活動的意識、
教學重點
運用身邊熟悉的事物,從多種角度發(fā)展數(shù)感,會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應(yīng)用哪個結(jié)論、
教學難點
會辨析哪些問題應(yīng)用哪個結(jié)論、
課前準備
標有單位長度的細繩、三角板、量角器、題篇
教學過程:
復(fù)習引入:
請學生復(fù)述勾股定理;使用勾股定理的前提條件是什么?
已知△abc的兩邊ab=5,ac=12,則bc=13對嗎?
創(chuàng)設(shè)問題情景:由課前準備好的一組學生以小品的形式演示教材第9頁古埃及造直角的方法、
這樣做得到的是一個直角三角形嗎?
提出課題:能得到直角三角形嗎
講授新課:
1、如何來判斷?(用直角三角板檢驗)
這個三角形的三邊分別是多少?(一份視為1)它們之間存在著怎樣的關(guān)系?
就是說,如果三角形的三邊為 , , ,請猜想在什么條件下,以這三邊組成的三角形是直角三角形?(當滿足較小兩邊的平方和等于較大邊的平方時)
2、繼續(xù)嘗試:下面的三組數(shù)分別是一個三角形的三邊長a,b,c:
5,12,13; 6, 8, 10; 8,15,17、
(1)這三組數(shù)都滿足a2 +b2=c2嗎?
(2)分別以每組數(shù)為三邊長作出三角形,用量角器量一量,它們都是直角三角形嗎?
3、直角三角形判定定理:如果三角形的三邊長a,b,c滿足a2 +b2=c2 ,那么這個三角形是直角三角形、
滿足a2 +b2=c2的三個正整數(shù),稱為勾股數(shù)、
4、例1 一個零件的形狀如左圖所示,按規(guī)定這個零件中 ∠a和∠dbc都應(yīng)為直角、工人師傅量得這個零件各邊尺寸如右圖所示,這個零件符合要求嗎?
隨堂練習:
1、下列幾組數(shù)能否作為直角三角形的三邊長?說說你的理由、
⑴9,12,15; ⑵15,36,39;
⑶12,35,36; ⑷12,18,22、
2、已知abc中bc=41, ac=40, ab=9, 則此三角形為_______三角形, ______是角、
3、四邊形abcd中已知ab=3,bc=4,cd=12,da=13,且∠abc=900,求這個四邊形的面積、
4、習題1、3
課堂小結(jié):
1、直角三角形判定定理:如果三角形的三邊長a,b,c滿足a2 +b2=c2 ,那么這個三角形是直角三角形、
2、滿足a2 +b2=c2的三個正整數(shù),稱為勾股數(shù)、勾股數(shù)擴大相同倍數(shù)后,仍為勾股數(shù)、
初中數(shù)學上冊教案 初二數(shù)學上冊教案蘇教版篇五
教學目的
通過分析儲蓄中的數(shù)量關(guān)系、商品利潤等有關(guān)知識,經(jīng)歷運用方程解決實際問題的過程,進一步體會方程是刻畫現(xiàn)實世界的有效數(shù)學模型。
重點、難點
1.重點:探索這些實際問題中的等量關(guān)系,由此等量關(guān)系列出方程。
2.難點:找出能表示整個題意的等量關(guān)系。
教學過程
一、復(fù)習
1.儲蓄中的利息、本金、利率、本利和等含義,關(guān)系:利息=本金×年利率×年數(shù)
本利和=本金×利息×年數(shù)+本金
2.商品利潤等有關(guān)知識。
利潤=售價—成本; =商品利潤率
二、新授
問題4.小明爸爸前年存了年利率為2.43%的二年期定期儲蓄,今年到期后,扣除利息稅,所得利息正好為小明買了一只價值48.6元的計算器,問小明爸爸前年存了多少元?
利息—利息稅=48.6
可設(shè)小明爸爸前年存了x元,那么二年后共得利息為
2.43%×x×2,利息稅為2.43%x×2×20%
根據(jù)等量關(guān)系,得2.43%x·2—2.43%x×2×20%=48.6
問,扣除利息的20%,那么實際得到的利息是多少?扣除利息的20%,實際得到利息的80%,因此可得2.43%x·2.80%=48.6
解方程,得x=1250
例1.一家商店將某種服裝按成本價提高40%后標價,又以8折(即按標價的80%)優(yōu)惠賣出,結(jié)果每件仍獲利15元,那么這種服裝每件的成本是多少元?
大家想一想這15元的利潤是怎么來的?
標價的80%(即售價)-成本=15
若設(shè)這種服裝每件的成本是x元,那么
每件服裝的標價為:(1+40%)x
每件服裝的實際售價為:(1+40%)x·80%
每件服裝的利潤為:(1+40%)x·80%—x
由等量關(guān)系,列出方程:
(1+40%)x·80%—x=15
解方程,得x=125
答:每件服裝的成本是125元。
三、鞏固練習
教科書第15頁,練習1、2。
四、小結(jié)
當運用方程解決實際問題時,首先要弄清題意,從實際問題中抽象出數(shù)學問題,然后分析數(shù)學問題中的等量關(guān)系,并由此列出方程;求出所列方程的解;檢驗解的合理性。應(yīng)用一元一次方程解決實際問題的關(guān)鍵是:根據(jù)題意首先尋找“等量關(guān)系”。
五、作業(yè)
教科書第16頁,習題6.3.1,第4、5題。