時(shí)間流逝得如此之快,我們的工作又邁入新的階段,請一起努力,寫一份計(jì)劃吧。計(jì)劃怎么寫才能發(fā)揮它最大的作用呢?那么下面我就給大家講一講計(jì)劃書怎么寫才比較好,我們一起來看一看吧。
高一數(shù)學(xué)教學(xué)工作計(jì)劃篇一
本學(xué)期擔(dān)任高一(9)(10)兩班的數(shù)學(xué)教學(xué)工作,兩班學(xué)生共有120人,初中的基礎(chǔ)參差不齊,但兩個(gè)班的學(xué)生整體水平不高;部分學(xué)生學(xué)習(xí)習(xí)慣不好,很多學(xué)生不能正確評(píng)價(jià)自己,這給教學(xué)工作帶來了一定的難度,為把本學(xué)期教學(xué)工作做好,制定如下教學(xué)工作計(jì)劃。
使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進(jìn)一步提高作為未來公民所必要的數(shù)學(xué)素養(yǎng),以滿足個(gè)人發(fā)展與社會(huì)進(jìn)步的需要。具體目標(biāo)如下。
1、提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。
2、具有一定的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會(huì)數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。
(一)情意目標(biāo)
1、通過分析問題的方法的教學(xué),培養(yǎng)學(xué)生的學(xué)習(xí)的興趣。
2、提供生活背景,通過數(shù)學(xué)建模,讓學(xué)生體會(huì)數(shù)學(xué)就在身邊,培養(yǎng)學(xué)數(shù)學(xué)用數(shù)學(xué)的意識(shí)。
3、在探究函數(shù)、等差數(shù)列、等比數(shù)列的性質(zhì),體驗(yàn)獲得數(shù)學(xué)規(guī)律的艱辛和樂趣,在分組 研究合作學(xué)習(xí)中學(xué)會(huì)交流、相互評(píng)價(jià),提高學(xué)生的合作意識(shí)。
4、基于情意目標(biāo),調(diào)控教學(xué)流程,堅(jiān)定學(xué)習(xí)信念和學(xué)習(xí)信心。
5、還時(shí)空給學(xué)生、還課堂給學(xué)生、還探索和發(fā)現(xiàn)權(quán)給學(xué)生,給予學(xué)生自主探索與合作交流的機(jī)會(huì),在發(fā)展他們思維能力的同時(shí),發(fā)展他們的數(shù)學(xué)情感、學(xué)好數(shù)學(xué)的自信心和追求數(shù)學(xué)的科學(xué)精神。
6、讓學(xué)生體驗(yàn)“發(fā)現(xiàn)--挫折--矛盾--頓悟--新的發(fā)現(xiàn)”這一科學(xué)發(fā)現(xiàn)歷程法。
(二)能力要求
1、培養(yǎng)學(xué)生記憶能力。
(1)通過定義、命題的總體結(jié)構(gòu)教學(xué),揭示其本質(zhì)特點(diǎn)和相互關(guān)系,培養(yǎng)對數(shù)學(xué)本質(zhì)問題的背景事實(shí)及具體數(shù)據(jù)的記憶。
(3)通過揭示立體集合、函數(shù)、數(shù)列有關(guān)概念、公式和圖形的對應(yīng)關(guān)系,培養(yǎng)記憶能力。
2、培養(yǎng)學(xué)生的運(yùn)算能力。
(1)通過概率的訓(xùn)練,培養(yǎng)學(xué)生的運(yùn)算能力。
(2)加強(qiáng)對概念、公式、法則的明確性和靈活性的教學(xué),培養(yǎng)學(xué)生的運(yùn)算能力。
(3)通過函數(shù)、數(shù)列的教學(xué),提高學(xué)生是運(yùn)算過程具有明晰性、合理性、簡捷性能力。
(4)通過一題多解、一題多變培養(yǎng)正確、迅速與合理、靈活的運(yùn)算能力,促使知識(shí)間的滲透和遷移。
(5)利用數(shù)形結(jié)合,另辟蹊徑,提高學(xué)生運(yùn)算能力。
高一數(shù)學(xué)教學(xué)工作計(jì)劃篇二
本節(jié)課是北師大版數(shù)學(xué)(必修2)第二章《解析幾何初步》第一節(jié)《1。2直線的方程》第一部分《直線方程的點(diǎn)斜式》內(nèi)容。
直線方程的點(diǎn)斜式給出了根據(jù)已知一個(gè)點(diǎn)和斜率求直線方程的方法和途徑。在求直線的方程中,直線方程的點(diǎn)斜式是基本的,直線方程的斜截式、兩點(diǎn)式都是由點(diǎn)斜式推出的。從初中代數(shù)中的一次函數(shù)引入,自然過渡到本節(jié)課想要解決的問題求直線方程問題。在引入,過程中要讓學(xué)生弄清直線與方程的一一對應(yīng)關(guān)系,理解研究直線可以從研究方程和方程的特征入手。在推導(dǎo)直線方程的點(diǎn)斜式時(shí),根據(jù)直線這一結(jié)論,先猜想確定一條直線的條件,再根據(jù)猜想得到的條件求出直線方程。
知識(shí)與技能:
(1)理解直線方程的點(diǎn)斜式、斜截式的形式特點(diǎn)和適用范圍;
(2)能正確利用直線的點(diǎn)斜式、斜截式公式求直線方程。
(3)體會(huì)直線的斜截式方程與一次函數(shù)的關(guān)系。
過程與方法:在已知直角坐標(biāo)系內(nèi)確定一條直線的幾何要素直線上的一點(diǎn)和直線的傾斜角的基礎(chǔ)上,通過師生探討,得出直線的點(diǎn)斜式方程;學(xué)生通過對比理解截距與距離的區(qū)別。
情態(tài)與價(jià)值觀:通過讓學(xué)生體會(huì)直線的斜截式方程與一次函數(shù)的關(guān)系,進(jìn)一步培養(yǎng)學(xué)生數(shù)形結(jié)合的思想,滲透數(shù)學(xué)中普遍存在相互聯(lián)系、相互轉(zhuǎn)化等觀點(diǎn),使學(xué)生能用聯(lián)系的觀點(diǎn)看問題。
重點(diǎn):直線的點(diǎn)斜式方程和斜截式方程。
難點(diǎn):直線的點(diǎn)斜式方程和斜截式方程的應(yīng)用。
要點(diǎn):運(yùn)用數(shù)形結(jié)合的思想方法,幫助學(xué)生分析描述幾何圖形。
1、教學(xué)方法的選擇:啟發(fā)、引導(dǎo)、討論。
創(chuàng)設(shè)問題情境,采用啟發(fā)誘導(dǎo)式的教學(xué)模式引導(dǎo)學(xué)生探索討論,學(xué)生主動(dòng)參與提出問題、探索問題和解決問題的過程,突出以學(xué)生為主體的。探究性學(xué)習(xí)活動(dòng)。
2、通過讓學(xué)生觀察、討論、辨析、畫圖,親身實(shí)踐,調(diào)動(dòng)多感官去體驗(yàn)數(shù)學(xué)建模的思想;學(xué)生要學(xué)會(huì)用數(shù)形結(jié)合的方法建立起代數(shù)問題與幾何問題間的密切聯(lián)系。為使學(xué)生積極參與課堂學(xué)習(xí),我主要指導(dǎo)了以下的學(xué)習(xí)方法:
①讓學(xué)生自己發(fā)現(xiàn)問題,自己通過觀察圖像歸納總結(jié),自己評(píng)析解題對錯(cuò),從而提高學(xué)生的參與意識(shí)和數(shù)學(xué)表達(dá)能力。
②分組討論。
準(zhǔn)確把握《教學(xué)大綱》和《考試大綱》的各項(xiàng)基本要求,立足于基礎(chǔ)知識(shí)和基本技能的教學(xué),注重滲透數(shù)學(xué)思想和方法。針對學(xué)生實(shí)際,不斷研究數(shù)學(xué)教學(xué),改進(jìn)教法,指導(dǎo)學(xué)法,奠定立足社會(huì)所需要的必備的基礎(chǔ)知識(shí)、基本技能和基本能力,著力于培養(yǎng)學(xué)生的創(chuàng)新精神,運(yùn)用數(shù)學(xué)的意識(shí)和能力,奠定他們終身學(xué)習(xí)的基礎(chǔ)。
我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)(a版)》,它在堅(jiān)持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承、借簽、發(fā)展、創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性、時(shí)代性、典型性和可接受性等,具有如下特點(diǎn):
1、親和力:以生動(dòng)活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)激情。
2、問題性:以恰時(shí)恰點(diǎn)的問題引導(dǎo)數(shù)學(xué)活動(dòng),培養(yǎng)問題意識(shí),孕育創(chuàng)新精神。
3、科學(xué)性與思想性:通過不同數(shù)學(xué)內(nèi)容的聯(lián)系與啟發(fā),強(qiáng)調(diào)類比、化歸等思想方法的運(yùn)用,學(xué)習(xí)數(shù)學(xué)地思考問題的方式,提高數(shù)學(xué)思維能力,培育理性精神。
4、時(shí)代性與應(yīng)用性:以具有時(shí)代感和現(xiàn)實(shí)感的素材創(chuàng)設(shè)情境,加強(qiáng)數(shù)學(xué)活動(dòng),發(fā)展應(yīng)用意識(shí)。
1、選取與內(nèi)容密切相關(guān)的、典型的、豐富的和學(xué)生熟悉的素材,用生動(dòng)活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對數(shù)學(xué)的親切感,引發(fā)學(xué)生看個(gè)究竟的沖動(dòng),以達(dá)到培養(yǎng)其興趣的目的。
2、通過觀察,思考,探究等欄目,引發(fā)學(xué)生的思考和探索活動(dòng),切實(shí)改進(jìn)學(xué)生的學(xué)習(xí)方式。
3、在教學(xué)中強(qiáng)調(diào)類比、化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。
高一作為起始年級(jí),作為從義務(wù)階段邁入應(yīng)試征程的適應(yīng)階段,該有的是一份執(zhí)著。他的特殊性就在于它的跨越性,理想的期盼與學(xué)法的突變,難度的加強(qiáng)與惰性的生成等等矛盾沖突伴隨著高一新生的成長。面對新教材的我們也是邊摸索邊改變,樹立新的教學(xué)理念,并落實(shí)在課堂教學(xué)的各個(gè)環(huán)節(jié),才能不負(fù)眾望。我們要從學(xué)生的認(rèn)識(shí)水平和實(shí)際能力出發(fā),研究學(xué)生的心理特征,做好初三與高一的銜接工作,幫助學(xué)生解決好從初中到高中學(xué)習(xí)方法的過渡。從高一起就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的學(xué)習(xí)方法。
1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動(dòng)、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。
2、注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識(shí);注意從已有的知識(shí)出發(fā),啟發(fā)學(xué)生思考。
3、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力和解決實(shí)際問題的能力,提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。
4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。
5、重視數(shù)學(xué)應(yīng)用意識(shí)及應(yīng)用能力的培養(yǎng)。
高一數(shù)學(xué)教學(xué)工作計(jì)劃篇三
我們要培養(yǎng)學(xué)生在數(shù)學(xué)課程教學(xué)的基礎(chǔ)上,提高自身的數(shù)學(xué)素養(yǎng),滿足個(gè)人發(fā)展與社會(huì)進(jìn)步的要求。主要目標(biāo)如下:
1、掌握主要的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,理解基本的數(shù)學(xué)概念和數(shù)學(xué)的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會(huì)其中所蘊(yùn)涵的數(shù)學(xué)思想和方法,以及它們在后續(xù)學(xué)習(xí)中的作用。通過不同形式的自主學(xué)習(xí)、探究活動(dòng),體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。
2、提高空間想像、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理和數(shù)形結(jié)合的思想等基本能力。
3、提高分析和解決問題(包括簡單的實(shí)際問題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨(dú)立獲取數(shù)學(xué)知識(shí)的能力。
4、發(fā)展數(shù)學(xué)應(yīng)用意識(shí)和創(chuàng)新意識(shí),力求對現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。
5、提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。
6、具有一定的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會(huì)數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。
1、激發(fā)學(xué)生的學(xué)習(xí)興趣和信心,引發(fā)學(xué)生的學(xué)習(xí)熱情。
2、用類比,推廣,特殊化,化歸和數(shù)形結(jié)合的思想等思想方法的運(yùn)用,培養(yǎng)學(xué)生思考問題的方式,提高數(shù)學(xué)思維能力,培育學(xué)生的探究精神。
3、以具有時(shí)代性和現(xiàn)實(shí)感的素材創(chuàng)設(shè)教學(xué)情境,加強(qiáng)數(shù)學(xué)活動(dòng),發(fā)展學(xué)生的應(yīng)用意識(shí)。選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,用生動(dòng)活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對數(shù)學(xué)的親切感,以達(dá)到培養(yǎng)其興趣的目的。
4、組織學(xué)生思考和探索,改進(jìn)學(xué)生的學(xué)習(xí)方式。是學(xué)生養(yǎng)成有邏輯思維的習(xí)慣。
我現(xiàn)在所教的兩個(gè)班的學(xué)生的學(xué)習(xí)基礎(chǔ)不好,自覺性差,自我控制能力弱,因此在教學(xué)中需時(shí)時(shí)提醒學(xué)生,培養(yǎng)其自覺性。班級(jí)存在的最大問題是學(xué)生的計(jì)算能力太差,學(xué)生不喜歡去算題,嫌麻煩,特別是遇到復(fù)雜點(diǎn)的計(jì)算題,學(xué)生就怕。因此在以后的教學(xué)中,重點(diǎn)在于培養(yǎng)學(xué)生的計(jì)算能力,同時(shí)要進(jìn)一步提高其思維能力。在教學(xué)時(shí)要注重基礎(chǔ)知識(shí),爭取每一堂課落實(shí)一些知識(shí)點(diǎn),掌握主要的知識(shí)點(diǎn)。
1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動(dòng)、故事等吸引學(xué)生的興趣,樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)生學(xué)習(xí)的興趣。
2、注意從實(shí)例出發(fā),注意運(yùn)用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識(shí);注意從已有的知識(shí)出發(fā),啟發(fā)學(xué)生思考。
3、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力就解決實(shí)際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。
4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。
5、重視數(shù)學(xué)應(yīng)用意識(shí)及應(yīng)用能力的培養(yǎng)。
高一數(shù)學(xué)教學(xué)工作計(jì)劃篇四
函數(shù)與方程是中學(xué)數(shù)學(xué)的重要內(nèi)容,是銜接初等數(shù)學(xué)與高等數(shù)學(xué)的紐帶,再加上函數(shù)與方程還是中學(xué)數(shù)學(xué)四大數(shù)學(xué)思想之一,是具體事例與抽象思想相結(jié)合的體現(xiàn),在教學(xué)過程中,我采用了自主探究教學(xué)法。通過教學(xué)情境的設(shè)置,讓學(xué)生由特殊到一般,有熟悉到陌生,讓學(xué)生從現(xiàn)象中發(fā)現(xiàn)本質(zhì),以此激發(fā)學(xué)生的成就感,激發(fā)學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)熱情。在現(xiàn)實(shí)生活中函數(shù)與方程都有著十分重要的應(yīng)用,因此函數(shù)與方程在整個(gè)高中數(shù)學(xué)教學(xué)中占有非常重要的地位。
本節(jié)課是《普通高中課程標(biāo)準(zhǔn)》的新增內(nèi)容之一,選自《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教課書數(shù)學(xué)i必修本(a版)》第94-95頁的第三章第一課時(shí)3.1.1方程的根與函數(shù)的的零點(diǎn)。
本節(jié)通過對二次函數(shù)的圖象的研究判斷一元二次方程根的存在性以及根的個(gè)數(shù)的判斷建立一元二次方程的根與相應(yīng)的二次函數(shù)的零點(diǎn)的聯(lián)系,然后由特殊到一般,將其推廣到一般方程與相應(yīng)的函數(shù)的情形.它既揭示了初中一元二次方程與相應(yīng)的二次函數(shù)的內(nèi)在聯(lián)系,也引出對函數(shù)知識(shí)的總結(jié)拓展。之后將函數(shù)零點(diǎn)與方程的根的關(guān)系在利用二分法解方程中(3.1.2)加以應(yīng)用,通過建立函數(shù)模型以及模型的求解(3.2)更全面地體現(xiàn)函數(shù)與方程的關(guān)系,逐步建立起函數(shù)與方程的聯(lián)系.滲透“方程與函數(shù)”思想。
總之,本節(jié)課滲透著重要的數(shù)學(xué)思想“特殊到一般的歸納思想”“方程與函數(shù)”和“數(shù)形結(jié)合”的思想,教好本節(jié)課可以為學(xué)好中學(xué)數(shù)學(xué)打下一個(gè)良好基礎(chǔ),因此教好本節(jié)是至關(guān)重要的。
知識(shí)與技能:
1.結(jié)合方程根的幾何意義,理解函數(shù)零點(diǎn)的定義;
2.結(jié)合零點(diǎn)定義的探究,掌握方程的實(shí)根與其相應(yīng)函數(shù)零點(diǎn)之間的等價(jià)關(guān)系;
3.結(jié)合幾類基本初等函數(shù)的圖象特征,掌握判斷函數(shù)的零點(diǎn)個(gè)數(shù)和所在區(qū)間 的方法
情感、態(tài)度與價(jià)值觀:
1.讓學(xué)生體驗(yàn)化歸與轉(zhuǎn)化、數(shù)形結(jié)合、函數(shù)與方程這三大數(shù)學(xué)思想在解決數(shù)學(xué)問題時(shí)的意義與價(jià)值;
2.培養(yǎng)學(xué)生鍥而不舍的探索精神和嚴(yán)密思考的良好學(xué)習(xí)習(xí)慣;
3.使學(xué)生感受學(xué)習(xí)、探索發(fā)現(xiàn)的樂趣與成功感
教學(xué)重點(diǎn):函數(shù)零點(diǎn)與方程根之間的關(guān)系;連續(xù)函數(shù)在某區(qū)間上存在零點(diǎn)的判定方法。
教學(xué)難點(diǎn):發(fā)現(xiàn)與理解方程的根與函數(shù)零點(diǎn)的關(guān)系;探究發(fā)現(xiàn)函數(shù)存在零點(diǎn)的方法。
導(dǎo)學(xué)案,自主探究,合作學(xué)習(xí),電子交互白板。
(一)、問題引人:
請同學(xué)們思考這個(gè)問題。用屏幕顯示判斷下列方程是否有實(shí)根,有幾個(gè)實(shí)根?
(1)
;(2)
?
學(xué)生活動(dòng):回答,思考解法。
教師活動(dòng):第二個(gè)方程我們不會(huì)解怎么辦?你是如何思考的?有什么想法?我們可以考慮將復(fù)雜問題簡單化,將未知問題已知化,通過對第一個(gè)問題的研究,進(jìn)而來解決第二個(gè)問題。對于第一個(gè)問題大家都習(xí)慣性地用代數(shù)的方法去解決,我們應(yīng)該打破思維定勢,走出自己給自己畫定的牢籠!這樣我們先把所依賴的拐杖丟掉,假如第一個(gè)方程你不會(huì)解,也不會(huì)應(yīng)用判別式,你要怎樣判斷其實(shí)根個(gè)數(shù)呢?
學(xué)生活動(dòng):思考作答。
設(shè)計(jì)意圖:通過設(shè)疑,讓學(xué)生對高次方程的根產(chǎn)生好奇。
(二)、概念形成:
預(yù)習(xí)展示1:
你能通過觀察二次方程的根及相應(yīng)的二次函數(shù)圖象,找出方程的根,圖象與軸交點(diǎn)的坐標(biāo)以及函數(shù)零點(diǎn)的關(guān)系嗎?
學(xué)生活動(dòng):觀察圖像,思考作答。
教師活動(dòng):我們來認(rèn)真地對比一下。用投影展示學(xué)生填寫表格
一元二次方程
方程的根
二次函數(shù)
函數(shù)的圖象
(簡圖)
圖象與軸交點(diǎn)的坐標(biāo)
函數(shù)的零點(diǎn)
????????????問題1:你能通過觀察二次方程的根及相應(yīng)的二次函數(shù)圖象,找出方程的根,圖象與
軸交點(diǎn)的坐標(biāo)以及函數(shù)零點(diǎn)的關(guān)系嗎?
學(xué)生活動(dòng):得到方程的實(shí)數(shù)根應(yīng)該是函數(shù)圖象與x軸交點(diǎn)的橫坐標(biāo)的結(jié)論。
教師活動(dòng):我們就把使方程 成立的實(shí)數(shù)x稱做函數(shù)的零點(diǎn).(引出零點(diǎn)的概念)
根據(jù)零點(diǎn)概念,提出問題,零點(diǎn)是點(diǎn)嗎?零點(diǎn)與函數(shù)方程的根有何關(guān)系?
學(xué)生活動(dòng):經(jīng)過觀察表格,得出(請學(xué)生總結(jié))
1)概念:函數(shù)的零點(diǎn)并不是“點(diǎn)”,它不是以坐標(biāo)的形式出現(xiàn),而是實(shí)數(shù)。例如函數(shù)的零點(diǎn)為x=-1,3
2)函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo).
3)方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn)。
教師活動(dòng):引導(dǎo)學(xué)生仔細(xì)體會(huì)上述結(jié)論。
再提出問題:如何并根據(jù)函數(shù)零點(diǎn)的意義求零點(diǎn)?
學(xué)生活動(dòng):可以解方程而得到(代數(shù)法);
可以利用函數(shù)的圖象找出零點(diǎn).(幾何法).
設(shè)計(jì)意圖:由學(xué)生最熟悉的二次方程和二次函數(shù)出發(fā),發(fā)現(xiàn)一般規(guī)律,并嘗試的去總結(jié)零點(diǎn),根與交點(diǎn)三者的關(guān)系。
(三)、探究性質(zhì):
(五)、探索研究(可根據(jù)時(shí)間和學(xué)生對知識(shí)的接受程度適當(dāng)調(diào)整)
討論:請大家給方程的一個(gè)解的大約范圍,看誰找得范圍更小?
[師生互動(dòng)]
師:把學(xué)生分成小組共同探究,給學(xué)生足夠的自主學(xué)習(xí)時(shí)間,讓學(xué)生充分研究,發(fā)揮其主觀能動(dòng)性。也可以讓各組把這幾個(gè)題做為小課題來研究,激發(fā)學(xué)生學(xué)習(xí)潛能和熱情。老師用多媒體演示,直觀地演示根的存在性及根存在的區(qū)間大小情況。
生:分組討論,各抒己見。在探究學(xué)習(xí)中得到數(shù)學(xué)能力的提高
第五階段設(shè)計(jì)意圖:
一是為用二分法求方程的近似解做準(zhǔn)備
二是小組探究合作學(xué)習(xí)培養(yǎng)學(xué)生的創(chuàng)新能力和探究意識(shí),本組探究題目就是為了培養(yǎng)學(xué)生的探究能力,此組題目具有較強(qiáng)的開放性,探究性,基本上可以達(dá)到上述目的。
(六)、課堂小結(jié):
零點(diǎn)概念
零點(diǎn)存在性的判斷
零點(diǎn)存在性定理的應(yīng)用注意點(diǎn):零點(diǎn)個(gè)數(shù)判斷以及方程根所在區(qū)間
(七)、鞏固練習(xí)(略)
高一數(shù)學(xué)教學(xué)工作計(jì)劃篇五
課本從學(xué)生熟悉的集合(自然數(shù)的集合、有理數(shù)的集合等)出發(fā),通過類比實(shí)數(shù)間的大小關(guān)系引入集合間的關(guān)系,同時(shí),結(jié)合相關(guān)內(nèi)容介紹子集等概念.在安排這部分內(nèi)容時(shí),課本注重體現(xiàn)邏輯思考的方法,如類比等.
值得注意的問題:在集合間的關(guān)系教學(xué)中,建議重視使用venn圖,這有助于學(xué)生通過體會(huì)直觀圖示來理解抽象概念;隨著學(xué)習(xí)的深入,集合符號(hào)越來越多,建議教學(xué)時(shí)引導(dǎo)學(xué)生區(qū)分一些容易混淆的關(guān)系和符號(hào),例如∈與?的區(qū)別.
1.理解集合之間包含與相等的含義,能識(shí)別給定集合的子集,能判斷給定集合間的關(guān)系,提高利用類比發(fā)現(xiàn)新結(jié)論的能力.
2.在具體情境中,了解空集的含義,掌握并能使用venn圖表達(dá)集合的關(guān)系,加強(qiáng)學(xué)生從具體到抽象的思維能力,樹立數(shù)形結(jié)合的思想.
教學(xué)重點(diǎn):理解集合間包含與相等的含義.
教學(xué)難點(diǎn):理解空集的含義.
1課時(shí)
思路1.實(shí)數(shù)有相等、大小關(guān)系,如5=5,53等等,類比實(shí)數(shù)之間的關(guān)系,你會(huì)想到集合之間有什么關(guān)系呢?(讓學(xué)生自由發(fā)言,教師不要急于作出判斷,而是繼續(xù)引導(dǎo)學(xué)生)
欲知誰正確,讓我們一起來觀察、研探.
思路2.復(fù)習(xí)元素與集合的關(guān)系——屬于與不屬于的關(guān)系,填空:(1)0n;(2)2q;(3)-1.5r.
類比實(shí)數(shù)的大小關(guān)系,如5
(1)觀察下面幾個(gè)例子:
①a={1,2,3},b={1,2,3,4,5};
②設(shè)a為國興中學(xué)高一(3)班男生的全體組成的集合,b為這個(gè)班學(xué)生的全體組成的集合;
③設(shè)c={x|x是兩條邊相等的三角形},d={x|x是等腰三角形};
④e={2,4,6},f={6,4,2}.
你能發(fā)現(xiàn)兩個(gè)集合間有什么關(guān)系嗎?
(2)例子①中集合a是集合b的子集,例子④中集合e是集合f的子集,同樣是子集,有什么區(qū)別?
(3)結(jié)合例子④,類比實(shí)數(shù)中的結(jié)論:“若a≤b,且b≤a,則a=b”,在集合中,你發(fā)現(xiàn)了什么結(jié)論?
(4)按升國旗時(shí),每個(gè)班的同學(xué)都聚集在一起站在旗桿附近指定的區(qū)域內(nèi),從樓頂向下看,每位同學(xué)是哪個(gè)班的,一目了然.試想一下,根據(jù)從樓頂向下看的,要想直觀表示集合,聯(lián)想集合還能用什么表示?
(5)試用venn圖表示例子①中集合a和集合b.
(6)已知a?b,試用venn圖表示集合a和b的關(guān)系.
(7)任何方程的解都能組成集合,那么x2+1=0的實(shí)數(shù)根也能組成集合,你能用venn圖表示這個(gè)集合嗎?
(8)一座房子內(nèi)沒有任何東西,我們稱為這座房子是空房子,那么一個(gè)集合沒有任何元素,應(yīng)該如何命名呢?
(9)與實(shí)數(shù)中的結(jié)論“若a≥b,且b≥c,則a≥c”相類比,在集合中,你能得出什么結(jié)論?
活動(dòng):教師從以下方面引導(dǎo)學(xué)生:
(1)觀察兩個(gè)集合間元素的特點(diǎn).
(2)從它們含有的元素間的關(guān)系來考慮.規(guī)定:如果a b,但存在x∈b,且x a,我們稱集合a是集合b的真子集,記作a b(或b a).
(3)實(shí)數(shù)中的“≤”類比集合中的 .
(4)把指定位置看成是由封閉曲線圍成的,學(xué)生看成集合中的元素,從樓頂看到的就是把集合中的元素放在封閉曲線內(nèi).教師指出:為了直觀地表示集合間的關(guān)系,我們常用平面上封閉曲線的內(nèi)部代表集合,這種圖稱為venn圖.
(5)封閉曲線可以是矩形也可以是橢圓等等,沒有限制.
(6)分類討論:當(dāng)a b時(shí),a b或a=b.
(7)方程x2+1=0沒有實(shí)數(shù)解.
(8)空集記為 ,并規(guī)定:空集是任何集合的子集,即 a;空集是任何非空集合的真子集,即 a(a≠ ).
(9)類比子集.
(1)①集合a中的元素都在集合b中;
②集合a中的元素都在集合b中;
③集合c中的元素都在集合d中;
④集合e中的元素都在集合f中.
可以發(fā)現(xiàn):對于任意兩個(gè)集合a,b有下列關(guān)系:集合a中的元素都在集合b中;或集合b中的元素都在集合a中.
(2)例子①中a b,但有一個(gè)元素4∈b,且4 a;而例子②中集合e和集合f中的元素完全相同.
(3)若a b,且b a,則a=b.
(4)可以把集合中元素寫在一個(gè)封閉曲線的內(nèi)部來表示集合.
(5)如圖1121所示表示集合a,如圖1122所示表示集合b.
圖1-1-2-1 圖1-1-2-2
(6)如圖1-1-2-3和圖1-1-2-4所示.
圖1-1-2-3 圖1-1-2-4
(7)不能.因?yàn)榉匠蘹2+1=0沒有實(shí)數(shù)解.
(8)空集.
高一數(shù)學(xué)教學(xué)工作計(jì)劃篇六
為了高一下學(xué)期的數(shù)學(xué)教學(xué)工作開展的更好,現(xiàn)做如下工作計(jì)劃:
1、獲得必要的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會(huì)其中所蘊(yùn)涵的數(shù)學(xué)思想和方法,以及它們在后續(xù)學(xué)習(xí)中的作用。通過不同形式的自主學(xué)習(xí)、探究活動(dòng),體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。
2、提高空間想像、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本能力。
我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)(a版)》,它在堅(jiān)持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性,時(shí)代性,典型性和可接受性等到,具有如下特點(diǎn):
1、“親和力”:以生動(dòng)活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)激情。
2、“問題性”:以恰時(shí)恰點(diǎn)的問題引導(dǎo)數(shù)學(xué)活動(dòng),培養(yǎng)問題意識(shí),孕育創(chuàng)新精神。
3、“科學(xué)性”與“思想性”:通過不同數(shù)學(xué)內(nèi)容的聯(lián)系與啟發(fā),強(qiáng)調(diào)類比,推廣,特殊化,化歸等思想方法的運(yùn)用,學(xué)習(xí)數(shù)學(xué)地思考問題的方式,提高數(shù)學(xué)思維能力,培育理性精神。
4、“時(shí)代性”與“應(yīng)用性”:以具有時(shí)代性和現(xiàn)實(shí)感的素材創(chuàng)設(shè)情境,加強(qiáng)數(shù)學(xué)活動(dòng),發(fā)展應(yīng)用意識(shí)。
1、選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,用生動(dòng)活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對數(shù)學(xué)的親切感,引發(fā)學(xué)生“看個(gè)究竟”的沖動(dòng),以達(dá)到培養(yǎng)其興趣的目的。
2、通過“觀察”,“思考”,“探究”等欄目,引發(fā)學(xué)生的思考和探索活動(dòng),切實(shí)改進(jìn)學(xué)生的學(xué)習(xí)方式。
3、在教學(xué)中強(qiáng)調(diào)類比,推廣,特殊化,化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。
1、基本情況:12班共xx人,男生xx人,女生xx人;本班相對而言,數(shù)學(xué)尖子約xx人,中上等生約xx人,中等生約xx人,中下生約xx人,后進(jìn)生約xx人。
14班共xx人,男生xx人,女生xx人;本班相對而言,數(shù)學(xué)尖子約xx人,中上等生約xx人,中等生約xx人,中下生約xx人,后進(jìn)生約xx人。
2、兩個(gè)班均屬普高班,學(xué)習(xí)情況良好,但學(xué)生自覺性差,自我控制能力弱,因此在教學(xué)中需時(shí)時(shí)提醒學(xué)生,培養(yǎng)其自覺性。班級(jí)存在的問題是計(jì)算能力太差,學(xué)生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學(xué)中,重點(diǎn)在于培養(yǎng)學(xué)生的計(jì)算能力,同時(shí)要進(jìn)一步提高其思維能力。同時(shí),由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時(shí)適機(jī)補(bǔ)充一些內(nèi)容。因此時(shí)間上可能仍然吃緊。同時(shí),其底子薄弱,因此在教學(xué)時(shí)只能注重基礎(chǔ)再基礎(chǔ),爭取每一堂課落實(shí)一個(gè)知識(shí)點(diǎn),掌握一個(gè)知識(shí)點(diǎn)。
1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動(dòng)、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。
2、注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識(shí);注意從已有的知識(shí)出發(fā),啟發(fā)學(xué)生思考。
3、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力就解決實(shí)際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。
4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。
5、自始至終貫徹教學(xué)四環(huán)節(jié),針對不同的教材內(nèi)容選擇不同教法。
6、重視數(shù)學(xué)應(yīng)用意識(shí)及應(yīng)用能力的培養(yǎng)。
高一數(shù)學(xué)教學(xué)工作計(jì)劃篇七
準(zhǔn)確把握《教學(xué)大綱》和《考試大綱》的各項(xiàng)基本要求,立足于基礎(chǔ)知識(shí)和基本技能的教學(xué),注重滲透數(shù)學(xué)思想和方法。針對學(xué)生實(shí)際,不斷研究數(shù)學(xué)教學(xué),改進(jìn)教法,指導(dǎo)學(xué)法,奠定立足社會(huì)所需要的必備的基礎(chǔ)知識(shí)、基本技能和基本能力,著力于培養(yǎng)學(xué)生的創(chuàng)新精神,運(yùn)用數(shù)學(xué)的意識(shí)和能力,奠定他們終身學(xué)習(xí)的基礎(chǔ)。
1、深入鉆研教材。以教材為核心,深入研究教材中章節(jié)知識(shí)的內(nèi)外結(jié)構(gòu),熟練把握知識(shí)的邏輯體系,細(xì)致領(lǐng)悟教材改革的精髓,逐步明確教材對教學(xué)形式、內(nèi)容和教學(xué)目標(biāo)的影響。
2、準(zhǔn)確把握新大綱。新大綱修改了部分內(nèi)容的教學(xué)要求層次,準(zhǔn)確把握新大綱對知識(shí)點(diǎn)的基本要求,防止自覺不自覺地對教材加深加寬。同時(shí),在整體上,要重視數(shù)學(xué)應(yīng)用;重視數(shù)學(xué)思想方法的滲透。如增加閱讀材料(開闊學(xué)生的視野),以拓寬知識(shí)的廣度來求得知識(shí)的深度。
3、樹立以學(xué)生為主體的教育觀念。學(xué)生的發(fā)展是課程實(shí)施的出發(fā)點(diǎn)和歸宿,教師必須面向全體學(xué)生因材施教,以學(xué)生為主體,構(gòu)建新的認(rèn)識(shí)體系,營造有利于學(xué)生學(xué)習(xí)的氛圍。
4、發(fā)揮教材的多種教學(xué)功能。用好章頭圖,激發(fā)學(xué)生的學(xué)習(xí)興趣;發(fā)揮閱讀材料的功能,培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí);組織好研究性課題的教學(xué),讓學(xué)生感受社會(huì)生活之所需;小結(jié)和復(fù)習(xí)是培養(yǎng)學(xué)生自學(xué)的好材料。
5、落實(shí)課外活動(dòng)的內(nèi)容。組織和加強(qiáng)數(shù)學(xué)興趣小組的活動(dòng)內(nèi)容。
1.通過實(shí)例,了解集合的含義,體會(huì)元素與集合的屬于關(guān)系。
2.能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用。
3.理解集合之間包含與相等的含義,能識(shí)別給定集合的子集。
4.在具體情境中,了解全集與空集的含義。
5.理解兩個(gè)集合的并集與交集的含義,會(huì)求兩個(gè)簡單集合的并集與交集。
6.理解在給定集合中一個(gè)子集的補(bǔ)集的含義,會(huì)求給定子集的補(bǔ)集。
7.能使用venn圖表達(dá)集合的關(guān)系及運(yùn)算,體會(huì)直觀圖示對理解抽象概念的作用。
8.通過豐富實(shí)例,進(jìn)一步體會(huì)函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對應(yīng)的語言來刻畫函數(shù),體會(huì)對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;了解構(gòu)成函數(shù)的要素,會(huì)求一些簡單函數(shù)的定義域和值域;了解映射的概念。
9.在實(shí)際情境中,會(huì)根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ǎㄈ鐖D像法、列表法、解析法)表示函數(shù)。
10.通過具體實(shí)例,了解簡單的分段函數(shù),并能簡單應(yīng)用。
11.通過已學(xué)過的函數(shù)特別是二次函數(shù),理解函數(shù)的單調(diào)性、最大(?。┲导捌鋷缀我饬x;結(jié)合具體函數(shù),了解奇偶性的含義。
12.學(xué)會(huì)運(yùn)用函數(shù)圖象理解和研究函數(shù)的性質(zhì)。
課時(shí)分配(14課時(shí))
1.通過具體實(shí)例,了解指數(shù)函數(shù)模型的實(shí)際背景。
2.理解有理指數(shù)冪的含義,通過具體實(shí)例了解實(shí)數(shù)指數(shù)冪的意義,掌握冪的運(yùn)算。
3.理解指數(shù)函數(shù)的概念和意義,能借助計(jì)算器或計(jì)算機(jī)畫出具體指數(shù)函數(shù)的圖象,探索并理解指數(shù)函數(shù)的單調(diào)性與特殊點(diǎn)。
4.在解決簡單實(shí)際問題過程中,體會(huì)指數(shù)函數(shù)是一類重要的函數(shù)模型。
5.理解對數(shù)的概念及其運(yùn)算性質(zhì),知道用換底公式能將一般對數(shù)轉(zhuǎn)化成自然對數(shù)或常用對數(shù);通過閱讀材料,了解對數(shù)的發(fā)現(xiàn)歷史以及其對簡化運(yùn)算的作用。
6.通過具體實(shí)例,直觀了解對數(shù)函數(shù)模型所刻畫的數(shù)量關(guān)系,初步理解對數(shù)函數(shù)的概念,體會(huì)對數(shù)函數(shù)是一類重要的函數(shù)模型;能借助計(jì)算器或計(jì)算機(jī)畫出具體對數(shù)函數(shù)的圖象,探索并了解對數(shù)函數(shù)的單調(diào)性和特殊點(diǎn)。
7.通過實(shí)例,了解冪函數(shù)的概念;結(jié)合函數(shù)的圖象,了解它們的變化情況。
課時(shí)分配(15課時(shí))
1.結(jié)合二次函數(shù)的圖象,判斷一元二次方程根的存在性及根的個(gè)數(shù),從而了解函數(shù)的零點(diǎn)與方程根的聯(lián)系。
根據(jù)具體函數(shù)的圖象,能夠借助計(jì)算器用二分法求相應(yīng)方程的近似解,了解這種方法是求方程近似解的常用方法。
2.利用計(jì)算工具,比較指數(shù)函數(shù)、對數(shù)函數(shù)以及冪函數(shù)增長差異;結(jié)合實(shí)例體會(huì)直線上升、指數(shù)爆炸、對數(shù)增長等不同函數(shù)類型增長的含義。
3.收集一些社會(huì)生活中普遍使用的函數(shù)模型(指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、分段函數(shù)等)的實(shí)例,了解函數(shù)模型的廣泛應(yīng)用。
4.根據(jù)某個(gè)主題,收集17世紀(jì)前后發(fā)生的一些對數(shù)學(xué)發(fā)展起重大作用的歷史事件和人物(開普勒、伽利略、笛卡兒、牛頓、萊布尼茨、歐拉等)的有關(guān)資料或現(xiàn)實(shí)生活中的函數(shù)實(shí)例,采取小組合作的方式寫一篇有關(guān)函數(shù)概念的形成、發(fā)展或應(yīng)用的'文章,在班級(jí)中進(jìn)行交流。
課時(shí)分配(8課時(shí))
3.1.1
方程的根與函數(shù)的零點(diǎn)
約1課時(shí)
10月25日
3.1.2
用二分法求方程的近似解
約2課時(shí)
10月26日27日
3.2.1
幾類不同增長的函數(shù)模型
約2課時(shí)
10月30日
|
11月3日
3.2.2
函數(shù)模型的應(yīng)用實(shí)例
約2課時(shí)
小結(jié)
約1課時(shí)
考生只要在全面復(fù)習(xí)的基礎(chǔ)上,抓住重點(diǎn)、難點(diǎn)、易錯(cuò)點(diǎn),各個(gè)擊破,夯實(shí)基礎(chǔ),規(guī)范答題,一定會(huì)穩(wěn)中求進(jìn),取得優(yōu)異的成績。